
Benchmarking Suite Documentation
Release 3.1.0

Gabriele Giammatteo

Jan 22, 2019

Contents

1 License 3

2 Topics 5
2.1 Quick Start . 5
2.2 Architecture . 6
2.3 Benchmarks . 9
2.4 Service Providers . 16
2.5 Command line tool . 18
2.6 REST Server . 23
2.7 Docker . 27
2.8 Scheduler . 28
2.9 API Reference . 31
2.10 Changelog . 31
2.11 Development . 36
2.12 FAQs . 37

3 Contacts 39

4 References 41

Python Module Index 43

i

ii

Benchmarking Suite Documentation, Release 3.1.0

The Benchmarking Suite is an all-in-one solution for benchmarking cloud services simulating different typical appli-
cation behaviours and comparing the results on different cloud providers. It wraps a set of representative, de-facto
standard and widely used third-party benchmarking tools and relies on them for the workload simulation and perfor-
mance measurement.

The Benchmarking Suite automates the benchmarking process managing the allocation and de-allocation of necessary
resources, the installation and execution of the benchmarking tools and the storage of data.

It has been designed to be extendible and allow an easy integration of new third-party benchmarking tools and cloud
services. Data collected and stored during the tests execution is homogenized and aggregated on different higher-level
metrics (e.g. average value) allowing performance comparisons among different providers and/or different dates.

The Benchmarking Suite development has been funded by two European reasearch and innovation projects: ARTIST1

and CloudPerfect2.

1 http://www.artist-project.eu/
2 https://cloudperfect.eu/

Contents 1

http://www.artist-project.eu/
https://cloudperfect.eu/
http://www.artist-project.eu/
https://cloudperfect.eu/

Benchmarking Suite Documentation, Release 3.1.0

2 Contents

CHAPTER 1

License

The Benchmarking Suite is an open source product released under the Apache License v2.03.

3 https://www.apache.org/licenses/LICENSE-2.0

3

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Benchmarking Suite Documentation, Release 3.1.0

4 Chapter 1. License

CHAPTER 2

Topics

2.1 Quick Start

2.1.1 Install

The Benchmarking Suite is package and distributed through PyPI1.

Important: The Benchmarking Suite requires Python 3.5+. If it is not the default version in you system, it is
recommended to create a virtualenv:

virtualenv -p /usr/bin/python3.5 benchmarking-suite
source benchsuite/bin/activate

Let’s start by installing the command line tool and the standard library:

$ pip install benchsuite.stdlib benchsuite.cli

This will make available the benchsuite bash command and will copy the standard benchmark tests configuration
into the default configuration location (located under ~/.config/benchmarking-suite/benchmarks).

2.1.2 Configure

Before executing a benchmark, we have to configure at least one Service Provider. The benchsuite.stdlib
provides some template (located under ~/.config/benchmarking-suite/providers).

For instance, for Amazon EC2 we can start from the template and complete it:

cp ~/.config/benchmarking-suite/providers/amazon.conf.example my-amazon.conf

1 https://python.org/pypi/benchsuite.core/

5

https://python.org/pypi/benchsuite.core/
https://python.org/pypi/benchsuite.core/

Benchmarking Suite Documentation, Release 3.1.0

Open and edit my-amazon.conf

[provider]
class = benchsuite.provider.libcloud.LibcloudComputeProvider
type = ec2

access_id = <your access_id>
secret_key = <your secret_key>

[ubuntu_micro]
image = ami-73f7da13
size = t2.micro

In this case we will provide this file directly to the command line tool, but we can also configure our own configuration
directory, put all our service providers and benchmarking tests configuration there and refer to them by name.

(Full specification of the configuration files syntax, can be found in the “Service Providers” sections).

2.1.3 Run!

Now you can execute your first benchmark test:

benchsuite multiexec --provider my-amazon.conf --service ubuntu_micro ycsb-
→˓mongodb:workloada

2.1.4 Go REST

Enable the REST server is very simple:

pip install benchsuite.rest
benchsuite-rest start
tail -f benchsuite-rest.log

2.1.5 References

2.2 Architecture

The Benchmarking Suite is composed by five main components summarized in the following diagram:

• Core: defines the main model, the extension framework for the benchmarks and the Cloud providers and the
main data representation types;

• REST: a REST server to access all the Benchmarking Suite functionalities;

• CLI: a command line tool (bash-compatible) to access all the Benchmarking Suite functionalities;

• Std Library: a set of selected benchmark tools, including their configurations and the implementation of the
required wrapping scripts for the execution and the parsing of results;

• Backend Connectors: a set of connectors to store the Benchmarking Suite executions results on different
storage technologies (e.g. MySQL, MongoDB).

• Scheduler: a service that periodically executes a benchmarking session;

6 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

The Core component is the only required component, the other components are optional. However the Benchmarking
Suite installation will miss the functionalities of not-installed modules (e.g. if the Backend Connectors is not installed,
the execution results will not be stored).

The User’s Cloud Configuration is the required configuration of the Cloud Providers that the Benchmarking Suite
needs to be able to access the Target Cloud Provider. It can be specified either as configuration file or as parameter in
the execution requests (through the REST or CLI components). Refer to section Service Providers for further details

2.2.1 Domain Model

The core concept in the Benchmarking Suite is the BenchmarkExecution. It represents the execution of a Benchmark
test against an ExecutionEnvironment provided from a ServiceProvider and produces an ExecutionResult.

Note: For instance, following this model we can easily model the execution of YCSB.WorkloadA (the Benchmark)
on the Virtual Machine with ip=50.1.1.1 (the ExecutionEnvironment) provided by Amazon EC2 (the ServiceProvider).

Since it is frequent to execute multiple tests against the same Service Provider, the Benchmarking Suite has also the
concept of BenchmarkingSession. that can gropu one or more executions of the ServiceProvider, using the same
ExecutionEnvironment.

2.2. Architecture 7

Benchmarking Suite Documentation, Release 3.1.0

2.2.2 Software Modules

In order to address all the different use cases and the installation necessities, the Benchmarking Suite is distributed in
six different software modules that can be installed separately:

8 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

benchsuite.
core

the core library (all other modules depend on it) with the definition of types and the funda-
mental framework for the extension of the Benchmarking Suite

benchsuite.
stdlib

a collection of benchmark tests configuration files and support for some Cloud Providers

benchsuite.
cli

a bash command line tool to manage tests and results

benchsuite.
rest

an HTTP server and a REST API to interact with the Benchmarking Suite

benchsuite.
backend

connectors for the supported storage backends

benchsuite.
scheduler

a service to automatically execute periodic benchmarks

2.3 Benchmarks

The Benchmarking Suite comes with a set of third-party benchmarking tools, each of them with a set of different test
configurations ready to be executed. The tools are:

• CFD: a tool realized in the CloudPerfect EU project1 that uses OpenFOAM to run a waterbox simulation. Can
be configured with different solvers, number of iterations and write to disk strategies. It is primarily a CPU
intensive benchmark;

• DaCapo: a tool for Java benchmarking simulating real world applications with non-trivial memory loads. It is
mainly a CPU and memory intensive benchmark;

• Filebench: a powerful and flexible tool able to generate and execute a variety of filesystem workloads to simu-
late applications like Web servers, File servers, Video services. It is mainly a Disk intensive benchmark;

• Iperf: is a tool for active measurements of the maximum achievable bandwidth on IP networks;

• Sysbench: a tool to test CPU, memory, file I/O, mutex performance and MySQL on Linux systems;

• YCSB: a tool for database benchmarking that supports several database technologies. In the Benchmarking
Suite, tests for Mysql and MongoDB are provided. It is primarily a Disk intensive benchmark;

• WebFrameworks: tests common web frameworks workloads like fetching and inserting data in a database or
create/parse json objects. It is mainly a Memory and Network intensive benchmark;

The following table summarizes the tools available and their compatibility with different operating system.

Table 1: Test-OS compatibility matrix
Tool Version CentOS Ubuntu 14 Ubuntu 16
CFD 1.0 X
DaCapo 9.12 X X
Filebench 1.4.9.1 X X X
Iperf 2.0.5 X X
Sysbench 2.1.0 X X
YCSB-MySQL 0.12.0 X X
YCSB-MongoDB 0.11.0 X X
WebFrameworks master X X

1 CloudPerect project homepage: http://cloudperfect.eu/

2.3. Benchmarks 9

http://cloudperfect.eu/

Benchmarking Suite Documentation, Release 3.1.0

2.3.1 CFD

The CFD benchmarking tool has been realized in the context of the CloudPerfect EU project1 and released open source
on GitHub2. The tool executes a CFD simulation on a waterbox geometry allowing to customize several parameters
in order to simulate different simulations.

The following combination of parameters is used in the Benchmarking Suite tests:

100iterGAMG 100 iterations using the GAMG solver
100iterWriteAtLast 100 iterations using the GAMG solver and not writing intermediate results on the

disk
500iterGAMG 500 iterations using the GAMG solver
500iterGAMGWriteAt-
Last

500 iterations using the GAMG solver and not writing intermediate results on the
disk

500iterICCG 500 iterations using the ICCG solver
500iterPCG 500 iterations using the PCG solver

All the tests uses all the CPUs available in the machine.

Metrics

Metric Unit Description
duration s The overall duration of the simulation

2.3.2 DaCapo

DaCapo3 as a tool for Java benchmarking by the programming language, memory management and computer archi-
tecture communities. It consists of a set of open source, real world applications with non-trivial memory loads. Tests
implemented by the tool are:

2 CFD Benchmark Case code: https://github.com/benchmarking-suite/cfd-benchmark-case
3 DaCapo homepage: http://www.dacapobench.org/

10 Chapter 2. Topics

https://github.com/benchmarking-suite/cfd-benchmark-case
http://www.dacapobench.org/

Benchmarking Suite Documentation, Release 3.1.0

Table 2: DaCapo tests (source: http://www.dacapobench.org/)
avrora simulates a number of programs run on a grid of AVR microcontrollers
batik produces a number of Scalable Vector Graphics (SVG) images based on the unit tests in Apache Batik
eclipse executes some of the (non-gui) jdt performance tests for the Eclipse IDE
fop takes an XSL-FO file, parses it and formats it, generating a PDF file.
h2 executes a JDBCbench-like in-memory benchmark, executing a number of transactions against a model

of a banking application, replacing the hsqldb benchmark
jython inteprets a the pybench Python benchmark
luin-
dex

Uses lucene to indexes a set of documents; the works of Shakespeare and the King James Bible

luse-
arch

Uses lucene to do a text search of keywords over a corpus of data comprising the works of Shakespeare
and the King James Bible

pmd analyzes a set of Java classes for a range of source code problems
sun-
flow

renders a set of images using ray tracing

tomcat runs a set of queries against a Tomcat server retrieving and verifying the resulting webpages
trade-
beans

runs the daytrader benchmark via a Jave Beans to a GERONIMO backend with an in memory h2 as the
underlying database

trades-
oap

runs the daytrader benchmark via a SOAP to a GERONIMO backend with in memory h2 as the underly-
ing database

xalan transforms XML documents into HTML

Each test is executed multiple times, until the exectuions duration converge (variance is <= 3.0 in the latest 3 execu-
tions).

Metrics

Metric Unit Description
timed_duration ms the duration of the latest execution
warmup_iters num the number of executions that were necessary to converge

2.3.3 Filebench

Filebench4 is a very powerful tool able to generate a variety of filesystem- and storage-based workloads. It implements
a set of basic primitives like createfile, readfile, mkdir, fsync, . . . and provide a language (the Workload Model
Language - WML) to combine these primitives in complex workloads.

In the Benchmarking Suite, a set of pre-defined workloads have been used to simulate different services:

4 Filebench homepage: https://github.com/filebench/filebench/wiki

2.3. Benchmarks 11

https://github.com/filebench/filebench/wiki

Benchmarking Suite Documentation, Release 3.1.0

Table 3: Filebench workloads (source:
https://github.com/filebench/filebench/wiki/Predefined-personalities)

file-
server

Emulates simple file-server I/O activity. This workload performs a sequence of creates, deletes, appends,
reads, writes and attribute operations on a directory tree. 50 threads are used by default. The workload
generated is somewhat similar to SPECsfs.

webproxyEmulates I/O activity of a simple web proxy server. A mix of create-write-close, open-read-close, and delete
operations of multiple files in a directory tree and a file append to simulate proxy log. 100 threads are used
by default.

web-
server

Emulates simple web-server I/O activity. Produces a sequence of open-read-close on multiple files in a
directory tree plus a log file append. 100 threads are used by default.

videoserverThis workloads emulates a video server. It has two filesets: one contains videos that are actively served,
and the second one has videos that are available but currently inactive. One thread is writing new videos to
replace no longer viewed videos in the passive set. Meanwhile $nthreads threads are serving up videos from
the active video fileset.

var-
mail

Emulates I/O activity of a simple mail server that stores each e-mail in a separate file (/var/mail/ server).
The workload consists of a multi-threaded set of create-append-sync, read-append-sync, read and delete
operations in a single directory. 16 threads are used by default. The workload generated is somewhat similar
to Postmark but multi-threaded.

Metrics

Metric Unit Description
duration s The overall duration of the test
ops num The sum of all operations (of any type) executed
ops_throughput ops/s The average number of operations executed per second
throughput MB/s The average number of MBs written/read during the test
cputime µs The average cpu time taken by each operation
latency_avg µs The average duration of each operation

2.3.4 Iperf

IPerf5 is a benchmarking tool to measure the maximum achievable bandwidth on IP networks. It provides statistics
both for TCP and UDP protocols.

In the Benchmarking Suite, the following pre-defined workloads have been created:

tcp_10_1 transfer data over a single TCP connections for 10 seconds
tcp_10_10 transfer data over 10 parallel TCP connections for 10 seconds
udp_10_1_1 transfer UDP packets over a single connection with a maximum bandwidth limited at 1MBit/s
udp_10_1_10 transfer UDP packets over a single connection with a maximum bandwidth limited at 10MBit/s
udp_10_10_10 transfer UDP packets over 10 parallel connections with a maximum bandwidth limited at 1MBit/s

Metrics

For the TCP workloads:
5 IPerf homepage: https://iperf.fr/

12 Chapter 2. Topics

https://iperf.fr/

Benchmarking Suite Documentation, Release 3.1.0

Metric Unit Description
duration s The overall duration of the test
transferred_x bytes data transferred for the connection x
bandwidth_x bit/s bandwidth fo the connection x
transferred_sum bytes sum of data transferred in all connections
bandwidth_sum bit/s sum of bandwidth of all connections

For the UDP workloads:

Metric Unit Description
duration s The overall duration of the test
transferred_x bytes data transferred over connection x
bandwidth_x bit/s bandwidth of connection x
total_datagrams_x num number of UDP packets sent over connection x
lost_datagrams_x num number of lost UDP packets over connection x
jitter_x ms latency of connection x
outoforder_x num number of packets received by the server in the wrong order
transferred_avg bytes average data transferred by each connection
bandwidth bit/s average bandwidth of each connection
total_datagrams_avg num average number of packets sent over each connection
lost_datagrams_avg num average number of packets lost for each connection
jitter_avg ms average latency
outoforder_avg num average number of packets received in the wrong order

2.3.5 Sysbench

SysBench6 is a modular, cross-platform and multi-threaded benchmark tool for evaluating CPU, memory, file I/O,
mutex performance, and even MySQL benchmarking. At the moment, in the Benchmarking Suite only the CPU
benchmarking capabilities are integrated.

cpu_10000Verifies prime numbers between 0 and 20000 by doing standard division of the number by all numbers
between 2 and the square root of the number. This is repeated 1000 times and using 1, 2, 4, 8, 16 and 32
threads

Metrics

Metric Unit Description
events_rate_X num/s the number of times prime numbers between 0 and 20000 are verified each second with

X threads
total_time_X s total number of seconds it took to execute the 1000 cycles with X threads
la-
tency_min_X

ms minimum time it took for a cycle

la-
tency_max_X

ms maximum time it took for a cycle

la-
tency_avg_X

ms average time the 1000 cycles took. It gives a good measure of the cpu speed

latency_95_X ms 95th percentile of the latency times.

6 Sysbench homepage: https://github.com/akopytov/sysbench

2.3. Benchmarks 13

https://github.com/akopytov/sysbench

Benchmarking Suite Documentation, Release 3.1.0

2.3.6 YCSB

YCSB7 is a database benchmarking tool. It has the support for several database technologies and provides a configu-
ration mechanism to simulate different usages.

In the Benchmarking Suite, YCSB is used to benchmark two of the most popular database servers: MySQL and
MongoDB.

For each database, the following workloads are executed:

work-
loada

Simulates an application that performs read and update operations with a ratio of 50/50 (e.g. recent
actions recording)

work-
loadb

Simulates an application that performs read and update operations with a ratio of 95/5 (e.g. photo
tagging)

work-
loadc

Simulates a read-only databases (100% read operations)

work-
loadd

Simulates an application that performs read and insert operations with a ratio of 95/5 (e.g. user status
update)

work-
loade

Simulates an application that performs scan and insert operations with a ratio of 95/5 (e.g. threaded
conversations)

work-
loadf

Simulates an application that performs read and read-modify-write operations with a ratio of 50/50
(e.g. user database)

Metrics

Metric Unit Description
duration s The overall duration of the test
read_ops num THe number of read operations executed
read_latency_avg µs The average latency of the read operations
read_latency_min µs The minimum latency of the read operations
read_latency_max µs The maximum latency of the read operations
read_latency_95 µs The maximum latency for the 95% of the read operations
read_latency_99 µs The maximum latency for the 99% of the read operations
insert_ops num THe number of insert operations executed
insert_latency_avg µs The average latency of the insert operations
insert_latency_min µs The minimum latency of the insert operations
insert_latency_max µs The maximum latency of the insert operations
insert_latency_95 µs The maximum latency for the 95% of the insert operations
insert_latency_99 µs The maximum latency for the 99% of the insert operations
update_ops num THe number of update operations executed
update_latency_avg µs The average latency of the update operations
update_latency_min µs The minimum latency of the update operations
update_latency_max µs The maximum latency of the update operations
update_latency_95 µs The maximum latency for the 95% of the update operations
update_latency_99 µs The maximum latency for the 99% of the update operations

7 YCSB homepage: https://github.com/brianfrankcooper/YCSB/wiki

14 Chapter 2. Topics

https://github.com/brianfrankcooper/YCSB/wiki

Benchmarking Suite Documentation, Release 3.1.0

2.3.7 WebFrameworks

This is an open source tool8 used to compare many web application frameworks executing fundamental tasks such as
JSON serialization, database access, and server-side template composition. The tool has been developed and it is used
to run the tests that generate the results available at: https://www.techempower.com/benchmarks/.

Currently, in the Benchmarking Suite the framework supported are: Django, Spring, CakePHP, Flask, FastHttp and
NodeJS.

For each framework the following tests are executed:

Table 4: Test types (source: https://www.techempower.com/benchmarks/#section=code&hw=ph)
json This test exercises the framework fundamentals including keep-alive support, request routing, request header

parsing, object instantiation, JSON serialization, response header generation, and request count throughput.
query This test exercises the framework’s object-relational mapper (ORM), random number generator, database

driver, and database connection pool.
for-
tunes

This test exercises the ORM, database connectivity, dynamic-size collections, sorting, server-side templates,
XSS countermeasures, and character encoding.

db This test uses a testing World table. Multiple rows are fetched to more dramatically punish the database
driver and connection pool. At the highest queries-per-request tested (20), this test demonstrates all frame-
works’ convergence toward zero requests-per-second as database activity increases.

plain-
text

This test is an exercise of the request-routing fundamentals only, designed to demonstrate the capacity of
high-performance platforms in particular. Requests will be sent using HTTP pipelining.

up-
date

This test exercises the ORM’s persistence of objects and the database driver’s performance at running UP-
DATE statements or similar. The spirit of this test is to exercise a variable number of read-then-write style
database operations.

For the types json, query, fortunes and db the tool executes six different burst of requests. Each burst last 15 seconds
and have a different concurrency level (number of requests done concurrently): 16, 32, 64, 128, 256 and 512.

For the type plaintext, the tool executes four burst of 15 seconds each with the following concurrency levels: 256,
1024, 4096 and 16384.

For the type update, the tool executes five burst of 15 seconds each with a 512 concurrency level, but different number
of queries to perform: 1, 5, 10, 15 and 20.

Metrics

Metric Unit Description
duration s The overall duration of the test
duration_N s The overall duration for the N concurrency level*. It is fixed to 15 seconds by default
totalRe-
quests_N

num The overall number of requests processed during the 15 seconds test at the N concurrency
level*

timeout_N num The number of requests that went in timeout for the N concurrency level*
latencyAvg_N s the average latency between a request and its response for the N concurrency level*
latencyMax_N s the maximum latency between a request and its response for the N concurrency level*
latencySt-
dev_N

s the standard deviation measure for the latency for the N concurrency level*

8 Web Framewoks Benchmarking code: https://github.com/TechEmpower/FrameworkBenchmarks

2.3. Benchmarks 15

https://www.techempower.com/benchmarks/
https://github.com/TechEmpower/FrameworkBenchmarks

Benchmarking Suite Documentation, Release 3.1.0

2.4 Service Providers

2.4.1 Configuration

Each provider has its own configuration file that provides all the information to access and use the provider plus the
configuration of the services offered by the provider (e.g. VM creation). The configuration is specified in a properties
file (also in JSON format). The list of supported properties is shown below (see on GitHub1):

#
PROVIDER SECTION
#
#

[provider]

#
MANDATORY FIELDS
#

the Benchmarking Suite class that implement the access to this provider
class = benchsuite.stdlib.provider.libcloud.LibcloudComputeProvider

custom human-readable name for the provider. Used only for displaying purposes
name = ote-testbed

the driver that Libcloud should use to access the provider
driver = openstack

Access credentials
access_id = admin
secret_key = xxxxx

Authentication URL for the target Cloud
auth_url = http://cloudpcntlr:5000/

#
OPTIONAL FIELDS
#

If not specified RegionOne is used
region = RegionOne

if not specified 2.0_password and 3.x_password will be attempted
auth_version = 3.x_password

if not specified, a new security group "benchsuite_sg" will be created (if
not exist)
security_group = mysg

Automatically selected if multiple exist
network = mynet

If not specified the access_id is used
tenant = admin

(continues on next page)

1 https://github.com/benchmarking-suite/benchsuite-stdlib/blob/master/data/providers/openstack.conf.example

16 Chapter 2. Topics

https://github.com/benchmarking-suite/benchsuite-stdlib/blob/master/data/providers/openstack.conf.example
https://github.com/benchmarking-suite/benchsuite-stdlib/blob/master/data/providers/openstack.conf.example

Benchmarking Suite Documentation, Release 3.1.0

(continued from previous page)

If specified do not attemp to assign a public IP
benchsuite.openstack.no_floating_ip = true

after a new VM is created, a connection test is executed to check that everything
is ok and to execute the post-creation scripts.
new_vm.connection_retry_period = 30
new_vm.connection_retry_times = 10

#
SERIVCE TYPE SECTIONS
#
#

[ubuntu_large]

#
MANDATORY FIELDS
#

image = base_ubuntu_14.04
size = m1.large

#
OPTIONAL FIELDS
#

name of the keypair to assign to the VM. If not specified, a new keypair will
be created and then removed after the test ends.
key_name = ggiammat-key

file that contains the private key. Alternatively the private key can be
specified in this config file directly with the ssh_private_key property
key_path = /home/ggiammat/credentials/filab-vicenza/ggiammat-key.pem

optional way to specify the key directly in the configuration instead
of by filename
ssh_private_key = -----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAkadPr5n1NSOyHloajvovCD05M5Gz36NN4UouSWmId8QuTwXx
Hw6m9aOXJmYHdkSYLrNs+y65EDpUkw1DXNDEJ146ZK9PxAQEdcngwPk76a4A/ybz
[...]
x+GRpQ9o/4EAzpBw9NVNNJ9Glbd7SSFqhpHR5pn5OBG/fdPJV8DzjUET528o8Jd9
gynGwAYRed38UtCE7gn+u1RSvmYUveDwQ7Cf2KIohI2jlzR6YLea
-----END RSA PRIVATE KEY-----

If not specified, the Benchmarking Suite will try to guess them
vm_user = ubuntu
platform = ubuntu

any command to run just after the VM has been created
post_create_script =

sudo hostname localhost

2.4. Service Providers 17

Benchmarking Suite Documentation, Release 3.1.0

2.5 Command line tool

2.5.1 Install

The Benchmarking Suite Command line tool can be installed with:

pip install benchsuite.cli

If the installation was successful, the benchsuite command should be in your path.

2.5.2 Configuration

The Benchmarking Suite has a configuration folder where the providers, benchmarks and storage backends con-
figuration files are located. If not explicitly set, the configuration folder is the located in the system de-
fault configuration folder (e.g. /home/<user>/.config in Linux). It can be customized setting the
BENCHSUITE_CONFIG_FOLDER env variable.

The Benchmarking Suite stores the active benchmarking sessions data on the filesystem. By default it is located under
the system default data folder (e.g. /Home/<user>/.local/share in Linux). It can be customized setting the
BENCHSUITE_DATA_FOLDER env variable.

2.5.3 Usage and Examples

Create a new session

To create a new session, the Benchmarking Suite needs two information: the provider configuration and the service
type. The command line tool offers multiple options to specify these parameters.

Provider Configuration

There are different alternatives:

1. specify a name with the --provider option (e.g. --provider myamazon). In this case, a provider
configuration file named <name>.conf will be searched in the configuration path;

2. specify a filename in the --provider option (e.g. --provider /path/myamazon.conf). The con-
figuration file specified will be used;

3. store the provider configuration in the BENCHSUITE_PROVIDER environment variable.

As example, the following invocations load the same provider configuration:

$ benchsuite new-session --provider my-amazon.conf ...

$ benchsuite new-session --provider $BENCHSUITE_CONFIG_FOLDER/providers/my-amazon.
→˓conf ...

$ export BENCHSUITE_PROVIDER=```cat $BENCHSUITE_CONFIG_FOLDER/providers/my-amazon.
→˓conf```
$ benchsuite new-session ...

Service Type

The service type can be specified using the --service-type option (e.g. --service-type
ubuntu_micro). The value of the service type must be one of the ones defined in the provider configuration.
Alternatively the ‘‘BENCHSUITE_SERVICE_TYPE‘ enviornment variable can be used.

18 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

If neither the --service-type option nor the ‘‘BENCHSUITE_SERVICE_TYPE‘ enviornment variable are spec-
ified and the provider configuration defines only ONE service type, that one will be used, otherwise the invocation will
fail.

2.5.4 Command Line Tool Documentation

This is an autogenerated documentation from the Python argparse options.

usage: benchsuite [-h] [--verbose] [--quiet] [--config CONFIG]
{shell,new-session,new-exec,prepare-exec,cleanup-exec,run-exec,list-

→˓sessions,list-providers,list-benchmarks,destroy-session,list-execs,collect-exec,
→˓multiexec}

...

Named Arguments

--verbose, -v print more information (3 levels)

--quiet, -q suppress normal output

Default: False

--config, -c foo help

Sub-commands:

shell

Starts an interactive shell

benchsuite shell [-h]

new-session

Creates a new benchmarking session

benchsuite new-session [-h] [--provider PROVIDER]
[--service-type SERVICE_TYPE] [--property PROPERTY]
[--user USER] [--tag TAG]

Named Arguments

--provider, -p The name for the service provider configuration or the filepath of the provider
configuration file. Alternatively, the provider configuration can be specified in the
environment variable BENCHSUITE_PROVIDER (the content of the variable
must be the actual configuration not the filepath)

--service-type, -s The name of one of the service types defined in the provider configuration. Alter-
natively, it can be specified in the BENCHSUITE_SERVICE_TYPE environment
varaible

2.5. Command line tool 19

Benchmarking Suite Documentation, Release 3.1.0

--property, -P Add a user defined property to the session. The property must be expressed in the
format <name>=<value>

--user, -u sets the “user” property. It is a shortcut for “–property user=<name>

--tag, -t sets one or more session tags. Internally, tags are stored as properties

Example: benchsuite new-session -p myamazon -s centos_tiny

new-exec

Creates a new execution

benchsuite new-exec [-h] session tool workload

Positional Arguments

session a valid session id

tool a valid benchmarking tool

workload a valid benchmarking tool workload

Example: benchsuite new-exec 73cff747-d31a-488c-98f5-a70b9a77a11f filebench varmail

prepare-exec

Executes the install scripts for an execution

benchsuite prepare-exec [-h] id

Positional Arguments

id a valid id of the execution

Example: benchsuite prepare-exec 4a5a86d4-88b6-11e7-9f96-742b62857160

cleanup-exec

Executed the cleanup script for an execution

benchsuite cleanup-exec [-h] id

Positional Arguments

id a valid id of the execution

Example: benchsuite cleanup-exec 4a5a86d4-88b6-11e7-9f96-742b62857160

20 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

run-exec

Executes the execute scripts for an execution

benchsuite run-exec [-h] [--storage-config STORAGE_CONFIG] [--async] id

Positional Arguments

id a valid id of the execution

Named Arguments

--storage-config, -r Specify a custom location for the storage configuration file

--async start the execution of the scripts and return (do not wait for the execution to finish)

Default: False

Example: benchsuite run-exec 4a5a86d4-88b6-11e7-9f96-742b62857160

list-sessions

a help

benchsuite list-sessions [-h]

list-providers

a help

benchsuite list-providers [-h]

list-benchmarks

a help

benchsuite list-benchmarks [-h]

destroy-session

a help

benchsuite destroy-session [-h] id

Positional Arguments

id bar help

2.5. Command line tool 21

Benchmarking Suite Documentation, Release 3.1.0

list-execs

lists the executions

benchsuite list-execs [-h]

collect-exec

collects the outputs of an execution

benchsuite collect-exec [-h] id

Positional Arguments

id the execution id

multiexec

Execute multiple tests in a single benchmarking session

benchsuite multiexec [-h] [--provider PROVIDER] [--service-type SERVICE_TYPE]
[--storage-config STORAGE_CONFIG] [--property PROPERTY]
[--user USER] [--tag TAG] [--failonerror] [--keep-env]
[--max-retry MAX_RETRY]
tests [tests ...]

Positional Arguments

tests one or more tests in the format <tool>[:<workload>]. If workload is omitted, all
workloads defined for that tool will be executed

Named Arguments

--provider, -p The name for the service provider configuration or the filepath of the provider
configuration file

--service-type, -s The name of one of the service types defined in the provider configuration. If not
specified, all service types will be used

--storage-config, -r Specify a custom location for the storage configuration file

--property, -P Add a user defined property to the session. The property must be expressed in the
format <name>=<value>

--user, -u sets the “user” property. It is a shortcut for “–property user=<name>

--tag, -t sets one or more session tags. Internally, tags are stored as properties

--failonerror, -e If set, exits immediately if one of the tests fail. It is false by default

Default: False

22 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

--keep-env, -k If set, doesn’t destroy the session after the end of the tests

Default: False

--max-retry, -m If a test fails, retry for a maximum of max-retry times (default is 1)

Example: benchsuite multiexec -p myamazon -s centos_tiny cfd:workload1 ycsb:workloada ycsb:workloadb

2.6 REST Server

2.6.1 Quick Start

This short tutorial shows how to use the API to perform a step-by-step benchmarking test.

First, we need to create a new session. This can be done making a POST request to /api/v1/sessions providing
the provider name and service type.

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' -d '{\

"provider": "my-provider",\
"service": "my-service-type"\

}' http://localhost:5000/api/v1/sessions

Alternatively, the provider configuration can be provided directly in the request payload. For instance, a typical request
to create a benchmarking session for Amazon EC2 would be:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' -d '{\

"config": {\
"provider": {\

"class": "benchsuite.stdlib.provider.libcloud.LibcloudComputeProvider
→˓",\

"name": "ec2-ggiammat",\
"driver": "ec2",\
"access_id": "<your_access_id>",\
"secret_key": "<your_key>",\
"region": "us-west-1"\

},\
"centos_micro": {\

"image": "ami-327f5352",\
"size": "t2.micro",\
"vm_user": "ec2-user",\
"platform": "centos_6",\
"key_name": "<keypair_name>",\
"ssh_private_key": "----BEGIN RSA PRIVATE KEY-----\nIIE... [...] .

→˓..6alL\n-----END RSA PRIVATE KEY-----"\
}\

}\
}' http://localhost:5000/api/v1/sessions/

Important: Providing the configuration directly in the request payload, your credentials will be sent over the network
unencrypted. Do it only when the server is running in a trusted environment!

2.6. REST Server 23

Benchmarking Suite Documentation, Release 3.1.0

Note: The ssh private key msut be provided on a sinlge line (json does not support multiline values), but the line ends
must be preserved. A convenient method to generate this string in bash is:

sed -E ':a;N;$!ba;s/\r{0,1}\n/\\n/g' my-key.pem

The response will contain the id of the session created:

{
"id": "58920c6c-c57c-4c55-a227-0ab1919e83be",
[...]

}

Now we can create a new benchmarking test execution in the session (note that the id of the session is used in the
request URL:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' -d '{ \

"tool": "idle", \
"workload": "idle30" \

}' http://localhost:5000/api/v1/sessions/58920c6c-c57c-4c55-a227-0ab1919e83be/
→˓executions/

The response will contain (along with other execution details) the id of the execution:

{
"id": "253d9544-b3db-11e7-8bc2-742b62857160",
[...]

}

With this execution id we can now invoke the prepare step that will create the resources on the provider, install the
necessary tools and load the workloads:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' http://localhost:5000/api/v1/executions/253d9544-b3db-11e7-8bc2-742b62857160/
→˓prepare

Finally, we can invoke the run step:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' http://localhost:5000/api/v1/executions/253d9544-b3db-11e7-8bc2-742b62857160/
→˓run

The response of the prepare and run steps contain the start time and the duration of the operation:

{
"started": "2017-10-18 08:18:33",
"duration": "32.28253793716431"

}

The same session can be used to run multiple executions. At the end, the session and the resources created (e.g. VM)
can be destroyed using the DELETE operation:

curl -X DELETE --header 'Accept: application/json' http://localhost:5000/api/v1/
→˓sessions/58920c6c-c57c-4c55-a227-0ab1919e83be

24 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

2.6.2 Swagger Doc

This documentation is autogenerated from the Swagger API Specification using sphinx-swaggerdoc.

A better documentation for the REST API can be found directly in the REST Server:

1. Launch the server

2. Open http://localhost:5000/api/v1/

sessions

POST /sessions/{session_id}/executions/

Parameters

Name Position Description Type
payload body
X-Fields header An optional fields mask string
session_id path string

GET /sessions/{session_id}/executions/

Parameters

Name Position Description Type
X-Fields header An optional fields mask string
session_id path string

GET /sessions/{session_id}

Parameters

Name Position Description Type
X-Fields header An optional fields mask string
session_id path The id of the session string

DELETE /sessions/{session_id}

Parameters

Name Position Description Type
session_id path The id of the session string

POST /sessions/

2.6. REST Server 25

https://github.com/unaguil/sphinx-swaggerdoc
http://localhost:5000/api/v1/

Benchmarking Suite Documentation, Release 3.1.0

Parameters

Name Position Description Type
payload body
X-Fields header An optional fields mask string

GET /sessions/

Parameters

Name Position Description Type
X-Fields header An optional fields mask string

executions

GET /executions/

Parameters

Name Position Description Type
X-Fields header An optional fields mask string

GET /executions/{exec_id}

Parameters

Name Position Description Type
X-Fields header An optional fields mask string
exec_id path string

POST /executions/{exec_id}/run

Parameters

Name Position Description Type
X-Fields header An optional fields mask string
exec_id path string

POST /executions/{exec_id}/prepare

Parameters

26 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

Name Position Description Type
X-Fields header An optional fields mask string
exec_id path string

benchmarks

GET /benchmarks/

Parameters

Name Position Description Type
X-Fields header An optional fields mask string

GET /benchmarks/{benchmark_id}

Parameters

Name Position Description Type
X-Fields header An optional fields mask string
benchmark_id path string

providers

GET /providers/

Parameters

Name Position Description Type
X-Fields header An optional fields mask string

2.7 Docker

The Benchmarking Suite is also distributed in two different Docker containers. They are available at https://cloud.
docker.com/app/benchsuite/repository/list.

2.7.1 benchsuite-multiexec

This container can be used to run benchmarks in batch mode.

Get (or update) the image with:

2.7. Docker 27

https://cloud.docker.com/app/benchsuite/repository/list
https://cloud.docker.com/app/benchsuite/repository/list
https://hub.docker.com/r/benchsuite/benchsuite-multiexec/

Benchmarking Suite Documentation, Release 3.1.0

docker pull benchsuite/benchsuite-multiexec

Run the container binding the provider and storage (optional) configuration files stored in the local machine and
passing the list of tests to execute as parameters (e.g. idle:idle5):

docker run -v /home/mypc/amazon.conf:/provider.conf -v /home/mypc/storage.conf:/
→˓storage.conf benchsuite/benchsuite-multiexec:dev -p provider.conf -s centos_micro
→˓idle:idle5

In case the storage service is running on the local machine, it could be necessary to use the --net=host option to
reach it.

Alternatively, provider and storage configurations can be specified through environment variables:
BENCHSUITE_PROVIDER and BENCHSUITE_STORAGE_CONFIG respectively.

docker run -e BENCHSUITE_PROVIDER="[myconf]...." -e BENCHSUITE_SERVICE_TYPE="centos_
→˓micro" -v /home/mypc/storage.conf:/storage.conf benchsuite/benchsuite-multiexec:dev
→˓idle:idle5

2.7.2 benchsuite-rest-service

This image contains the Benchmarking Suite REST SERVER (see rest-server-doc section). When started, the con-
tainer exposes the REST service on port 5000.

To run the container, just use the Docker CLI:

docker run benchsuite/benchsuite-rest-server

The service reads the Benchmarking Suite bs-configuration from the / directory of the container. For instance, to
provide a configuration for the storage (to persist results in the db) mount a file in the container named /storage.
conf or /storage.json:

docker run -v my-storage.conf:/storage.conf benchsuite/benchsuite-rest-server

Also providers configuration files can be mounted in the container in the same way:

docker run -v my-provider.conf:/providers/my-provider.conf benchsuite/benchsuite-rest-
→˓server

2.8 Scheduler

The Benchsuite Scheduler allows to schedule the execution of benchmarking tests at pre-fixed intervals. It needs:

• a MongoDB instance to load the schedules (see below), keep its state, log the executions and save the results

• a Docker Swarm instance to launch the tests (the benchsuite-multiexec Docker image is used) and to run the
scheduler itself

The scheduler works in this way:

1. loads from a MongoDB collection the schedules and creates a job for each schedule (it uses APScheduler1 under
the hood). The jobs are kept in sync and refreshed periodically

2. sets-up a timer for each job accordingly with the time interval defined in the schedule

1 https://apscheduler.readthedocs.io/en/latest/

28 Chapter 2. Topics

https://hub.docker.com/r/benchsuite/benchsuite-rest-service/
https://apscheduler.readthedocs.io/en/latest/
https://apscheduler.readthedocs.io/en/latest/

Benchmarking Suite Documentation, Release 3.1.0

3. when its the time to execute a job, launchs a benchsuite-multiexec and configure it to execute the needed tests
and to store the results on another MongoDB collection

2.8.1 Schedules

The schedules are the main input to the scheduler and models the tests that needs to be scheduled. Each schedule
contains two types of information: the parameters of the tests and the timing information. Each schedule is expected
to be a MongoDB document with this structure:

{
"id" : "ec2-123asd-filebench",
"active": true,
"provider_config_secret" : "ec2",
"username" : "ggiammat",
"tests" : [

"filebench",
"ycsb-mysql",
"dacapo"

],
"tags" : [

"scheduled"
],
"properties" : {

"prop1" : "val1",
"prop2" : "prop2"

},
"env" : {

"MYVAR": "val"
},
"interval" : {

"hours" : 1
},
"benchsuite_additional_opts": ["-v", "--another-opt],
"docker_additional_opts": {

"hosts": {"myhost":"10.1.0.1"}
}

}

It contains:

• id: a unique id

• active: defined whether this schedule should be considered by the scheduler or not

• provider_config_secret: the name (or the id) of the Docker secret that contains the Cloud Provider
configuration. It uses the Docker secrets because the configuration also contains the user credentials to access
the Cloud Provider

• username: an identifier of the user that is requesting the execution. It will be saved also in the benchmarking
results

• tests: a list of test names to execute to be passed to the benchsuite multiexec command (see Command
Line Tool Documentation)

• tags: a list of tags to assign to the results

• properties: a list of key-value properties that will be assigned to the results

• env: key-value pairs that define enviornment variables to be available in the execution environment during the
execution

2.8. Scheduler 29

Benchmarking Suite Documentation, Release 3.1.0

• interval: the time interval between two executions. The accepted keys are: weeks, days, hours,
minutes and seconds. Multiple keys can be combined and if not specified, the default value is 0

• benchsuite_additional_opts: a list of string that will be appended to the benchsuite-multiexec com-
mand line

• docker_additional_opts: a dictionary of additional options to use when creating new Docker services
(see DockerCreateServiceReference2 for a reference of available options)

New schedules are automatically loaded and they are rescheduled if a change is detected.

2.8.2 Configuration

The schduler accepts multiple parameters. Some of them are mandatory, while some other have a default value.

All the parameters can be specified in a config file in the format

PARAM1=val1
PARAM2=val2
...

or specified as environment variable (the latter overrides the former).

The list of mandatory parameters are:

• DB_HOST: the connection string to the MongDB (e.g. “mongodb://localhost:27017”). It can be omitted only if
the SCHEDULES_DB_HOST, JOBS_DB_HOST and EXEC_DB_HOSTS are provided

• DOCKER_STORAGE_SECRET: the name of the secret that contains the Benchsuite Storage configuration (used
to store results of the tests)

The optional parameters (or the ones that have a default value) are:

• SCHEDULES_SYNC_INTERVAL (default: 60): it the number of seconds between two refresh of the schedules
in the MongoDB collection

• SCHEDULES_JOBS_PRINT_INTERVAL (default: 60): interval time in seconds to print on the console a
report of the scheduled and running jobs

• DB_NAME (default: “benchmarking”): the name of the MongoDB database to use

• SCHEDULES_DB_HOST: if set, overrides the DB_HOST value for the MongoDB instance used to load the
schedules

• SCHEDULES_DB_NAME: if set, overrides the DB_NAME value for the database used to load the schedules

• SCHEDULES_DB_COLLECTION (default: “scheduling”): the name of the collection that contains the sched-
ules

• JOBS_DB_HOST: if set, overrides the DB_HOST value for the MongoDB instance used to store the internal
state of the scheduler

• JOBS_DB_NAME: if set, overrides the DB_NAME value for the database used to store the internal state of the
scheduler

• JOBS_DB_COLLECTION (default: “_apjobs”): the name of the collection that contains the internal state of the
scheduler

• EXEC_DB_HOST: if set, overrides the ‘‘DB_HOST‘ value for the MongoDB instance used to log the executions

• EXEC_DB_NAME: if set, overrides the DB_NAME value for the database used to log the executions

2 https://docker-py.readthedocs.io/en/stable/services.html

30 Chapter 2. Topics

https://docker-py.readthedocs.io/en/stable/services.html
https://docker-py.readthedocs.io/en/stable/services.html

Benchmarking Suite Documentation, Release 3.1.0

• EXEC_DB_COLLECTION (default: “_apexec”): the name of the collection that contains the logs of the execu-
tions

• DOCKER_HOST (default: “localhost:2375”): the host and port of the Docker Swarm instance (used to create
containers though the Docker API)

• DOCKER_BENCHSUITE_IMAGE (default: “benchsuite/benchsuite-multiexec”): the name of the benchsuite-
multiexec image to use

• DOCKER_GLOBAL_ENV: a comma separated list of environment variables that will be set in the benchsuite-
multiexec container (e.g. “VAR1=val1,var_2=val2”). Useful to set the an http proxy if necessary. Use ‘,’ to
insert a comma in the variables names or values.

• BENCHSUITE_GLOBAL_TAGS: a comma separated list of string that will be set as tags in the benchmarking
results (e.g. “test1,scheduled,automatic”)

• DOCKER_ADDITIONAL_OPTS: a comma separated list of options in the format ‘KEY=VAL’ that will be
added to the Docker service create invocation. VAL is evaluated using json.loads() function. See DockerCreate-
ServiceReference2 for a reference of available options (e.g. ‘hosts={“myhost”:”10.1.0.1”}’)

• BENCHSUITE_ADDITIONAL_OPTS: additional options that will be set on the benchsuite-multiexec com-
mand line (e.g. “-vvv –failonerror”)

2.8.3 Benchsuite Scheduler Docker image

The simplest way to run the Benchsuite Scheduler is to run the benchsuite/benchsuite-scheduler Docker
image specifying the configuration parameters as envrionment variables:

docker run -e DB_HOST=mongodb://172.17.0.1:27017/ -e DOCKER_STORAGE_SECRET=storage -e
→˓DOCKER_HOST=172.17.0.1:2375 benchsuite/benchsuite-scheduler

Alternatively, the configuration can be specified in the /tmp/config file.

docker run -v /home/mypc/scheduler.conf:/tmp/config benchsuite/benchsuite-scheduler

The two approaches can be also be mixed.

2.9 API Reference

class benchsuite.core.controller.BenchmarkingController(config_folder=None, stor-
age_config_file=None)

The facade to all Benchmarking Suite operations

class benchsuite.core.model.benchmark.Benchmark(tool_id, workload_id, tool_name,
workload_name, workload_categories,
workload_description)

A Benchmark

2.10 Changelog

This Changelog reports the main changes occuring in the Benchmarking Suite. The versions of the Benchmarking
Suite (also called Milestones) refers to the versions of the Docker containers and the Documentation, while the versions
of the single modules are reported in each entry of the changelog.

2.9. API Reference 31

https://docker-py.readthedocs.io/en/stable/services.html
https://docker-py.readthedocs.io/en/stable/services.html
https://hub.docker.com/r/benchsuite/benchsuite-scheduler/

Benchmarking Suite Documentation, Release 3.1.0

The Unreleased section contains changes already released in the Python modules, but not yet included in any Mile-
stone.

2.10.1 Unreleased

2.10.2 Benchmarking Suite v. 3.1.0

Release date: 2019-01-17

• [stdlib-2.7.0] reduced number of testing queries for YCSB benchmarks (reducing the overall duration of the
tests)

• [stdlib-2.7.0] added Ubuntu 14 compatibility for Web Framework benchmark

• [stdlib-2.7.0] more robust ssh connections (retry on network failure for a fixed number of times)

• [stdlib-2.7.0] new version of Paramiko ssh library that brings security patches

• [stdlib-2.7.0] increasing waiting time in YCSB test for MongoDB to start

• [stdlib-2.7.0] implemented multi-node benchmark tests with custom number and names of nodes

• [stdlib-2.7.0] added IPerf benchmark with various pre-defined workloads

• [stdlib-2.7.0] added Sysbench benchmark with various pre-defined workloads

• [core-2.6.0] added option to keep the environment after a multiexec execution

• [core-2.6.0] added option in multiexec mode to retry a failed test

• [core-2.6.0] added option to retry (–max-retry) tests if they fail

• [core-2.6.0] improved handling of logs in multi-node tests

• [core-2.6.0] improved execution of clean-up scripts

• [scheduler-1.5.0] improved logging of executions

• [scheduler-1.5.0] added debug option that not delete containers after they end

• [backends-2.5.0] updated result records schema to version 2: include all logs of multi-node tests

• [cli-2.3.0] improved log messages

2.10.3 Benchmarking Suite v. 3.0.0

Release date: 2018-08-08

• [stdlib-2.6.0] added Web Frameworks Benchmarking tool

• [stdlib-2.6.0] added category and keywords for each workload

• [stdlib-2.6.0] auto-discovery (when possible) of networks, security groups and platforms

• [stdlib-2.6.0] add async executions to avoid timeout exceptions

• [stdlib-2.6.0] support creation of key pairs if not provided in the configuration

• [scheduler-1.4.0] updated to docker-py version 3.0.0

• [scheduler-1.4.0] improved logging of exceptions

• [scheduler-1.4.0] added “properties” field in schedules to store custom data in generated results

• [cli-2.2.0] introduced autocomplete for some commands

32 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

• [backends-2.4.0] store execution errors and logs in the backend

• [backends-2.4.0] changed results schema

• [core-2.5.0] fixed crash if the storage was not properly configured

• [core-2.5.0] allowed to use wildecards in workload names in multiexec mode

2.10.4 Benchmarking Suite v. 2.7.0

Release date: 2018-02-14

• [rest-2.3.0] added options to listen on specific host and port

• [sdtlib-2.5.0] customizable retries time for connection to new VMs

• [stdlib-2.5.0] delete the VMs created in case of an unhandled exception during the creation

• [stdlib-2.5.0] fixed empty values in configuration parsing

• [core-2.4.0] added possibility to use custom sessions storage file

• [scheduler-1.3.1] fixed invalid characters in containers name

2.10.5 Benchmarking Suite v. 2.6.1

Release date: 2018-01-22

• [stdlib-2.4.3] support for ‘auth_url’, ‘auth_version’ and ‘region’ provider config parameters

2.10.6 Benchmarking Suite v. 2.6.0

Release date: 2018-01-16

• [scheduler-1.3.0] added configuration parameters to add additional Docker options to the containers created by
the scheduler

2.10.7 Benchmarking Suite v. 2.5.1

Release date: 2018-01-15

• fixed the URL to download the DaCapo benchmark

2.10.8 Benchmarking Suite v. 2.5.0

Release date: 2017-12-18

• [backends-2.3.0] MongoDB - storing start time as date object (previously it was a timestamp)

• [scheduler-1.2.0] Support for using Docker unix socket instead of the tcp port

• [core-2.3.1] Fixed DEFAULT section not read in the Json configuration files

• [stdlib-2.4.1] Fixed serialization issue of the LibcloudComputeProvider objects

• [cli-2.1.2] Improvements and fixes to the “shell” command

2.10. Changelog 33

Benchmarking Suite Documentation, Release 3.1.0

2.10.9 Benchmarking Suite v. 2.4.0

Release date: 2017-12-04

• [stdlib-2.4.0] randomize names of VMs created by the Benchmarking Suite

• [stdlib-2.4.0] set security groups in openstack

• [scheduler-1.1.0] add config parameter to add global env, tags and additional params

• [scheduler-1.1.0] added the “active” parameter in the schedules

• [core-2.3.0, backends-2.2.0] added storage of execution errors in the database

2.10.10 Benchmarking Suite v. 2.3.1

Release date: 2017-11-21

• [core-2.2.4] fixed support for the –failonerror parameter from the command line

2.10.11 Benchmarking Suite v. 2.3.0

Release date: 2017-11-20

• [core-2.2.2] considering only providers configuration files with extension .json and .conf

• [core-2.2.3] duration is now considered as a metric

• [stdlib-2.3.0] metrics renamed to make them coherent in different tests

• [stdlib-2.3.0] added multiple workloads in the CFD benchmark

• [cli-2.1.1] added –failonerror for the multiexec command. The option allows to not continue with next test if the
current one fails

• [scheduler-1.0.0] first release of the Benchsuite Scheduler

2.10.12 Benchmarking Suite v. 2.2.2

Release date: 2017-10-20

This patch release fixes some minor bugs found in the code:

• fixed creation of new sessions if the provider configuration is in json format

• fixed default error handling in the REST server (now the full exception message - and not only “Internal Server
Error” is sent back to the caller)

• fixed parsing of “network” and “security_group” parameters: now they can be either the id or the name of the
object

• fixed crash of some Filebench workloads on Amazon EC2 using the micro instances

2.10.13 Benchmarking Suite v. 2.2.1

Release date: 2017-10-18

This patch release fixes an outdated information in the REST server documentation page

34 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

2.10.14 Benchmarking Suite v. 2.2.0

Release date: 2017-10-18

This minor release introduces following improvements:

• support for json configuration files (only for providers and storage at the moment)

• better handling of network configuration parameters in the provider configuration

2.10.15 Benchmarking Suite v. 2.1.0

Release date: 2017-10-13

This minor release introduces some new functionalities and improvement to the tool:

• support for MongoDB backend

• list of available benchmarks and cloud providers (in Cli and REST)

• field “name” in workload sections in configuration files

• return node_id (in case of OpenStack) in the REST calls

• accept provider configuration as string parameter

• add tags to sessions/executions (e.g. for the user-id in the QET)

• provider and storage configurations can be also specified via command line or environment variable

• improvement and tuning of YCSB, Filebench and DaCapo benchmarks

2.10.16 Benchmarking Suite v. 2.0.0

Release date: 2017-08-01

This is a major release version of the Benchmarking Suite that introduces several changes and improvements with
respect to the Benchmarking Suite 1.x versions.

In the Core library:

• a complete refactoring of the code to improve the parameterization and modularization

• introduction of benchmarking sessions

In the StdLib library:

• for Benchmarks:

– NEW CFD Benchmark

– Updated Filebench and YCSB tools versions

• for Cloud Providers:

– NEW FIWARE FILAB connector

– Updated Amazon EC2 to work with VPCs

The Cli and REST modules are completely new and the previous implmentation have been abandoned.

2.10. Changelog 35

Benchmarking Suite Documentation, Release 3.1.0

2.11 Development

This section explains the development, integration and distritbuion process of the Benchmarking Suite. Intended
readers are developers.

2.11.1 Continuous Integration

TBD

2.11.2 Release Steps

Checklist to release the Benchmarking Suite

1. Commit any not-committed file on the workspace

2. Identify whcih modules needs to be released (see commits since the latest release, see the changelog)

3. Update the changelog file if not done (use messages in the commits as reference)

Modules Release

For each module to release:

1. increase the version number in the __init__py file

2. create the source distribution package and upload on PYPI Testing (remove the -r pypitest to upload on
the official PYPI)

python setup.py sdist upload -r pypitest

3. to test the release from PYPI test:

create a new virtual env
virtualenv -p /usr/bin/python3.5 venvXX

activate the virtualenv
source venvXX/bin/activate

install the modules to test
pip install -v -i https://testpypi.python.org/pypi --extra-index-url https://pypi.
→˓python.org/simple/ -U benchsuite.core

4. upload the distribution packages on PYPI

python setup.py sdist upload

3. commit and push everything on GitHub

4. create a release on GitHub (this will also create a tag)

36 Chapter 2. Topics

Benchmarking Suite Documentation, Release 3.1.0

Milestone Release

1. Check all the modules and the versions that will be included. Release modules if necessary

1. In benchsuite-docs, update the version in conf.py

2. Update the changelog.rst with the changelog for this milestone

6. Commit the documentation on GitHub and create a tag. This will also create a new tag in readthedocs

7. Update the “.release” Dockerfiles in benchsuite-docker project

8. Commit benchsuite-docker and create a new tag. This will trigger the creation of a new tag for docker images

2.11.3 Documentation

Documentation is automatically built on ReadTheDocs at every commit

2.11.4 Docker

Docker containers are built automatically from Dockerfiles located in the benchsuite-docker repository.

To create a new tag of Docker images, create a tag in the Git repository that starts with “v” (e.g. “v2.0”, “v1.2.3”,
“v1.2.3-beta1”, . . .)

2.12 FAQs

2.12.1 How to clear all stored benchmarking sessions?

Sessions are stored in a file in ~/.local/share/benchmarking-suite/sessions.dat. Deleting that file,
all sessions will be removed. This should be an extreme solution, the more correct way to delete a session is to use the
destroy-session command.

2.12.2 How to clear all stored executions?

Executions are stored along with the sessions. See previous question: How to clear all stored benchmarking sessions?.

2.12. FAQs 37

Benchmarking Suite Documentation, Release 3.1.0

38 Chapter 2. Topics

CHAPTER 3

Contacts

Main contact person for the Benchmarking Suite is:

Person Gabriele Giammatteo

Company Research and Development Laboratory Engineering Ingegneria Informatica S.p.A.

Address via Riccardo Morandi, 32 00148 Rome, Italy

e-mail gabriele.giammatteo@eng.it

For bugs, features and other code-related requests the issue tracker can be used at: https://github.com/
benchmarking-suite/benchsuite-core/issues

39

mailto:gabriele.giammatteo@eng.it
https://github.com/benchmarking-suite/benchsuite-core/issues
https://github.com/benchmarking-suite/benchsuite-core/issues

Benchmarking Suite Documentation, Release 3.1.0

40 Chapter 3. Contacts

CHAPTER 4

References

41

Benchmarking Suite Documentation, Release 3.1.0

42 Chapter 4. References

Python Module Index

b
benchsuite.core.model.benchmark, 31

43

Benchmarking Suite Documentation, Release 3.1.0

44 Python Module Index

Index

B
Benchmark (class in benchsuite.core.model.benchmark),

31
BenchmarkingController (class in bench-

suite.core.controller), 31
benchsuite.core.model.benchmark (module), 31

45

	License
	Topics
	Quick Start
	Architecture
	Benchmarks
	Service Providers
	Command line tool
	REST Server
	Docker
	Scheduler
	API Reference
	Changelog
	Development
	FAQs

	Contacts
	References
	Python Module Index

