
Benchmarking Suite Documentation
Release 2.6.1

Gabriele Giammatteo

Feb 15, 2018

Contents

1 License 3

2 Topics 5
2.1 Quick Start . 5
2.2 Architecture . 6
2.3 Benchmarks . 9
2.4 Executions . 10
2.5 Command line tool . 11
2.6 REST Server . 15
2.7 Docker . 17
2.8 Scheduler . 18
2.9 API Reference . 21
2.10 Changelog . 21
2.11 Development . 24
2.12 FAQs . 25

3 Contacts 27

4 References 29

Python Module Index 31

i

ii

Benchmarking Suite Documentation, Release 2.6.1

The Benchmarking Suite is an all-in-one solution for benchmarking cloud services simulating different typical appli-
cation behaviours and comparing the results on different cloud providers. It wraps a set of representative, de-facto
standard and widely used third-party benchmarking tools and relies on them for the workload simulation and perfor-
mance measurement.

The Benchmarking Suite automates the benchmarking process managing the allocation and de-allocation of necessary
resources, the installation and execution of the benchmarking tools and the storage of data.

It has been designed to be extendible and allow an easy integration of new third-party benchmarking tools and cloud
services. Data collected and stored during the tests execution is homogenized and aggregated on different higher-level
metrics (e.g. average value) allowing performance comparisons among different providers and/or different dates.

The Benchmarking Suite development has been funded by two European reasearch and innovation projects: ARTIST1

and CloudPerfect2.

1 http://www.artist-project.eu/
2 https://cloudperfect.eu/

Contents 1

http://www.artist-project.eu/
https://cloudperfect.eu/
http://www.artist-project.eu/
https://cloudperfect.eu/

Benchmarking Suite Documentation, Release 2.6.1

2 Contents

CHAPTER 1

License

The Benchmarking Suite is an open source product released under the Apache License v2.03.

3 https://www.apache.org/licenses/LICENSE-2.0

3

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Benchmarking Suite Documentation, Release 2.6.1

4 Chapter 1. License

CHAPTER 2

Topics

2.1 Quick Start

2.1.1 Install

The Benchmarking Suite is package and distributed through PyPI1.

Important: The Benchmarking Suite requires Python 3.5+. If it is not the default version in you system, it is
recommended to create a virtualenv:

virtualenv -p /usr/bin/python3.5 benchmarking-suite
source benchsuite/bin/activate

Let’s start by installing the command line tool and the standard library:

$ pip install benchsuite.stdlib benchsuite.cli

This will make available the benchsuite bash command and will copy the standard benchmark tests configuration
into the default configuration location (located under ~/.config/benchmarking-suite/benchmarks).

2.1.2 Configure

Before executing a benchmark, we have to configure at least one Service Provider. The benchsuite.stdlib
provides some template (located under ~/.config/benchmarking-suite/providers).

For instance, for Amazon EC2 we can start from the template and complete it:

cp ~/.config/benchmarking-suite/providers/amazon.conf.example my-amazon.conf

1 https://python.org/pypi/benchsuite.core/

5

https://python.org/pypi/benchsuite.core/
https://python.org/pypi/benchsuite.core/

Benchmarking Suite Documentation, Release 2.6.1

Open and edit my-amazon.conf

[provider]
class = benchsuite.provider.libcloud.LibcloudComputeProvider

type = ec2

access_id = <your access_id>
secret_key = <your secret_key>

region = us-west-1
ex_security_group_ids = <id of the security group>
ex_subnet = <id of the subnet>

[ubuntu_micro]
image = ami-73f7da13
size = t2.micro
key_name = <your keypair name>
key_path = <path to your private key file>
vm_user = ubuntu
platform = ubuntu_16

In this case we will provide this file directly to the command line tool, but we can also configure our own configuration
directory, put all our service providers and benchmarking tests configuration there and refer to them by name (see
XXX seciton).

2.1.3 Run!

Now you can execute your first benchmark test:

benchsuite multiexec --provider my-amazon.conf --service ubuntu_micro ycsb-
→˓mongodb:WorkloadA

2.1.4 Go REST

Enable the REST server is very simple:

pip install benchsuite.rest
benchsuite-rest start
tail -f benchsuite-rest.log

2.1.5 References

2.2 Architecture

The Benchmarking Suite is composed by five main components summarized in the following diagram:

• Core: defines the main model, the extension framework for the benchmarks and the Cloud providers and the
main data representation types;

• REST: a REST server to access all the Benchmarking Suite functionalities;

• CLI: a command line tool (bash-compatible) to access all the Benchmarking Suite functionalities;

6 Chapter 2. Topics

Benchmarking Suite Documentation, Release 2.6.1

• Std Library: a set of selected benchmark tools, including their configurations and the implementation of the
required wrapping scripts for the execution and the parsing of results;

• Backend Connectors: a set of connectors to store the Benchmarking Suite executions results on different
storage technologies (e.g. MySQL, MongoDB).

The Core component is the only required component, the other components are optional. However the Benchmarking
Suite installation will miss the functionalities of not-installed modules (e.g. if the Backend Connectors is not installed,
the execution results will not be stored).

The User’s Cloud Configuration is the required configuration of the Cloud Providers that the Benchmarking Suite
needs to be able to access the Target Cloud Provider. It can be specified either as configuration file or as parameter in
the execution requests (through the REST or CLI components). Refer to section providers for further details

2.2.1 Domain Model

The core concept in the Benchmarking Suite is the BenchmarkExecution. It represents the execution of a Benchmark
test against an ExecutionEnvironment provided from a ServiceProvider and produces an ExecutionResult.

Note: For instance, following this model we can easily model the execution of YCSB.WorkloadA (the Benchmark)
on the Virtual Machine with ip=50.1.1.1 (the ExecutionEnvironment) provided by Amazon EC2 (the ServiceProvider).

2.2. Architecture 7

Benchmarking Suite Documentation, Release 2.6.1

Since it is frequent to execute multiple tests against the same Service Provider, the Benchmarking Suite has also the
concept of BenchmarkingSession. that can gropu one or more executions of the ServiceProvider, using the same
ExecutionEnvironment.

8 Chapter 2. Topics

Benchmarking Suite Documentation, Release 2.6.1

2.2.2 Software Modules

In order to address all the different use cases and the installation necessities, the Benchmarking Suite is distributed in
five different software modules that can be installed separately:

benchsuite.
core

the core library (all other modules depend on it) with the definition of types and the fundamental
framework for the extension of the Benchmarking Suite

benchsuite.
stdlib

a collection of benchmark tests configuration files and support for some Cloud Providers

benchsuite.
cli

a bash command line tool to manage tests and results

benchsuite.
rest

an HTTP server and a REST API to interact with the Benchmarking Suite

benchsuite.
backend

connectors for the supported storage backends

2.3 Benchmarks

2.3.1 Benchsuite StdLib

The Benchmarking Suite comes with a set of benchmark tests ready to be executed included in the StdLib module.
The following table summarizes the tools available and their compatibility with different operating system.

Tool Version CentOS Ubuntu 14
CFD 1.0 X
DaCapo 9.12 X X
Filebench 1.4.9.1 X X
YCSB-MySQL 0.12.0 X X
YCSB-MongoDB 0.11.0 X X

Metrics

Each tool produces a set of metrics that are extracted by the Benchmarking Suite and included in the results database.
The following table reports for each tool the metrics extracted and a brief description of its meaning.

2.3. Benchmarks 9

Benchmarking Suite Documentation, Release 2.6.1

Tool Metric Unit Description
CFD duration s The overall duration of the test
Filebench1 duration s The overall duration of the test

ops The sum of all the operations (of any type) executed
ops_throughput ops/s The average number of operations executed per second
throughput MB/s The average throughput in MegaByte of the operations
cputime µs The average cpu time in µs taken by each operation
latency_avg µs The average latency of each operation

YCSB2 duration s The overall duration of the test
ops_throughput ops/s The average number of operation per second executed
read_ops The number of read operations executed
read_latency_avg µs The average latency for the read operations
read_latency_min µs The minimum latency for the read operations
read_latency_max µs The maximum latency for the read operations
read_latency_95 µs The maximum latency for the 95% of the read operations
read_latency_99 µs The maximum latency for the 99% of the read operations
insert_ops The number of insert operations executed
insert_latency_avg µs The average latency for the insert operations
insert_latency_min µs The minimum latency for the insert operations
insert_latency_max µs The maximum latency for the insert operations
insert_latency_95 µs The maximum latency for the 95% of the insert operations
insert_latency_99 µs The maximum latency for the 99% of the insert operations
update_ops The number of update operations executed
update_latency_avg µs The average latency for the update operations
update_latency_min µs The minimum latency for the update operations
update_latency_max µs The maximum latency for the update operations
update_latency_95 µs The maximum latency for the 95% of the update operations
update_latency_99 µs The maximum latency for the 99% of the update operations

DaCapo duration s The overall duration of the test

2.4 Executions

2.4.1 Single Step Execution

The single step execution executes one or more benchmarks

2.4.2 Step-by-Step Execution

The Step-by-Step execution allows to

This is of particular interest if, during the execution of the benchmarks, it is needed to run other tools like profilers

1 More about the Filebench metrics can be found at https://github.com/filebench/filebench/wiki/Collected-metrics
2 More about the YCSB metrics can be found at https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload

10 Chapter 2. Topics

https://github.com/filebench/filebench/wiki/Collected-metrics
https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload

Benchmarking Suite Documentation, Release 2.6.1

2.5 Command line tool

2.5.1 Install

The Benchmarking Suite Command line tool can be installed with:

pip install benchsuite.cli

If the installation was successful, the benchsuite command should be in your path.

2.5.2 Usage and Examples

Create a new session

To create a new session, the Benchmarking Suite needs two information: the provider configuration and the service
type. The command line tool offers multiple options to specify these parameters.

Provider Configuration

There are different alternatives:

1. specify a name with the --provider option (e.g. --provider myamazon). In this case, a provider
configuration file named <name>.conf will be searched in the configuration path;

2. specify a filename in the --provider option (e.g. --provider /path/myamazon.conf). The con-
figuration file specified will be used;

3. store the provider configuration in the BENCHSUITE_PROVIDER environment variable.

As example, the following invocations load the same provider configuration:

$ benchsuite new-session --provider my-amazon.conf ...

$ benchsuite new-session --provider $BENCHSUITE_CONFIG_FOLDER/providers/my-amazon.
→˓conf ...

$ export BENCHSUITE_PROVIDER=```cat $BENCHSUITE_CONFIG_FOLDER/providers/my-amazon.
→˓conf```
$ benchsuite new-session ...

Service Type

The service type can be specified using the --service-type option (e.g. --service-type
ubuntu_micro). The value of the service type must be one of the ones defined in the provider configuration.
Alternatively the ‘‘BENCHSUITE_SERVICE_TYPE‘ enviornment variable can be used.

If neither the --service-type option nor the ‘‘BENCHSUITE_SERVICE_TYPE‘ enviornment variable are spec-
ified and the provider configuration defines only ONE service type, that one will be used, otherwise the invocation will
fail.

2.5.3 Command Line Tool Documentation

This is an autogenerated documentation from the Python argparse options.

2.5. Command line tool 11

Benchmarking Suite Documentation, Release 2.6.1

usage: benchsuite [-h] [--verbose] [--quiet] [--config CONFIG]
{shell,new-session,new-exec,prepare-exec,run-exec,list-sessions,

→˓list-providers,list-benchmarks,destroy-session,list-execs,collect-exec,multiexec}
...

Named Arguments

--verbose, -v print more information (3 levels)

--quiet, -q suppress normal output

Default: False

--config, -c foo help

Sub-commands:

shell

Starts an interactive shell

benchsuite shell [-h]

new-session

Creates a new benchmarking session

benchsuite new-session [-h] [--provider PROVIDER]
[--service-type SERVICE_TYPE] [--property PROPERTY]
[--user USER] [--tag TAG]

Named Arguments

--provider, -p The name for the service provider configuration or the filepath of the provider
configuration file. Alternatively, the provider configuration can be specified in the
environment variable BENCHSUITE_PROVIDER (the content of the variable
must be the actual configuration not the filepath)

--service-type, -s The name of one of the service types defined in the provider configuration. Alter-
natively, it can be specified in the BENCHSUITE_SERVICE_TYPE environment
varaible

--property, -P Add a user defined property to the session. The property must be expressed in the
format <name>=<value>

--user, -u sets the “user” property. It is a shortcut for “–property user=<name>

--tag, -t sets one or more session tags. Internally, tags are stored as properties

12 Chapter 2. Topics

Benchmarking Suite Documentation, Release 2.6.1

new-exec

Creates a new execution

benchsuite new-exec [-h] session tool workload

Positional Arguments

session a valid session id

tool a valid benchmarking tool

workload a valid benchmarking tool workload

prepare-exec

Executes the install scripts for an execution

benchsuite prepare-exec [-h] id

Positional Arguments

id a valid id of the execution

run-exec

Executes the execute scripts for an execution

benchsuite run-exec [-h] [--storage-config STORAGE_CONFIG] [--async] id

Positional Arguments

id a valid id of the execution

Named Arguments

--storage-config, -r Specify a custom location for the storage configuration file

--async start the execution of the scripts and return (do not wait for the execution to finish)

Default: False

list-sessions

a help

benchsuite list-sessions [-h]

2.5. Command line tool 13

Benchmarking Suite Documentation, Release 2.6.1

list-providers

a help

benchsuite list-providers [-h]

list-benchmarks

a help

benchsuite list-benchmarks [-h]

destroy-session

a help

benchsuite destroy-session [-h] id

Positional Arguments

id bar help

list-execs

lists the executions

benchsuite list-execs [-h]

collect-exec

collects the outputs of an execution

benchsuite collect-exec [-h] id

Positional Arguments

id the execution id

multiexec

Execute multiple tests in a single benchmarking session

benchsuite multiexec [-h] [--provider PROVIDER] [--service-type SERVICE_TYPE]
[--storage-config STORAGE_CONFIG] [--property PROPERTY]
[--user USER] [--tag TAG] [--failonerror]
tests [tests ...]

14 Chapter 2. Topics

Benchmarking Suite Documentation, Release 2.6.1

Positional Arguments

tests one or more tests in the format <tool>[:<workload>]. If workload is omitted, all
workloads defined for that tool will be executed

Named Arguments

--provider, -p The name for the service provider configuration or the filepath of the provider
configuration file

--service-type, -s The name of one of the service types defined in the provider configuration. If not
specified, all service types will be used

--storage-config, -r Specify a custom location for the storage configuration file

--property, -P Add a user defined property to the session. The property must be expressed in the
format <name>=<value>

--user, -u sets the “user” property. It is a shortcut for “–property user=<name>

--tag, -t sets one or more session tags. Internally, tags are stored as properties

--failonerror, -e If set exit immediately if one of the tests fail. It is false by default

Default: False

2.6 REST Server

2.6.1 Quick Start

This short tutorial shows how to use the API to perform a step-by-step benchmarking test.

First, we need to create a new session. This can be done making a POST request to /api/v1/sessions providing
the provider name and service type.

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' -d '{\

"provider": "my-provider",\
"service": "my-service-type"\

}' http://localhost:5000/api/v1/sessions

Alternatively, the provider configuration can be provided directly in the request payload. For instance, a typical request
to create a benchmarking session for Amazon EC2 would be:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' -d '{\

"config": {\
"provider": {\

"class": "benchsuite.stdlib.provider.libcloud.LibcloudComputeProvider
→˓",\

"name": "ec2-ggiammat",\
"driver": "ec2",\
"access_id": "<your_access_id>",\
"secret_key": "<your_key>",\
"region": "us-west-1"\

},\

2.6. REST Server 15

Benchmarking Suite Documentation, Release 2.6.1

"centos_micro": {\
"image": "ami-327f5352",\
"size": "t2.micro",\
"vm_user": "ec2-user",\
"platform": "centos_6",\
"key_name": "<keypair_name>",\
"ssh_private_key": "----BEGIN RSA PRIVATE KEY-----\nIIE... [...] .

→˓..6alL\n-----END RSA PRIVATE KEY-----"\
}\

}\
}' http://localhost:5000/api/v1/sessions/

Important: Providing the configuration directly in the request payload, your credentials will be sent over the network
unencrypted. Do it only when the server is running in a trusted environment!

Note: The ssh private key msut be provided on a sinlge line (json does not support multiline values), but the line ends
must be preserved. A convenient method to generate this string in bash is:

sed -E ':a;N;$!ba;s/\r{0,1}\n/\\n/g' my-key.pem

The response will contain the id of the session created:

{
"id": "58920c6c-c57c-4c55-a227-0ab1919e83be",
[...]

}

Now we can create a new benchmarking test execution in the session (note that the id of the session is used in the
request URL:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' -d '{ \

"tool": "idle", \
"workload": "idle30" \

}' http://localhost:5000/api/v1/sessions/58920c6c-c57c-4c55-a227-0ab1919e83be/
→˓executions/

The response will contain (along with other execution details) the id of the execution:

{
"id": "253d9544-b3db-11e7-8bc2-742b62857160",
[...]

}

With this execution id we can now invoke the prepare step that will create the resources on the provider, install the
necessary tools and load the workloads:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' http://localhost:5000/api/v1/executions/253d9544-b3db-11e7-8bc2-742b62857160/
→˓prepare

Finally, we can invoke the run step:

16 Chapter 2. Topics

Benchmarking Suite Documentation, Release 2.6.1

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' http://localhost:5000/api/v1/executions/253d9544-b3db-11e7-8bc2-742b62857160/
→˓run

The response of the prepare and run steps contain the start time and the duration of the operation:

{
"started": "2017-10-18 08:18:33",
"duration": "32.28253793716431"

}

The same session can be used to run multiple executions. At the end, the session and the resources created (e.g. VM)
can be destroyed using the DELETE operation:

curl -X DELETE --header 'Accept: application/json' http://localhost:5000/api/v1/
→˓sessions/58920c6c-c57c-4c55-a227-0ab1919e83be

2.6.2 Swagger Doc

This documentation is autogenerated from the Swagger API Specification using sphinx-swaggerdoc.

A better documentation for the REST API can be found directly in the REST Server:

1. Launch the server

2. Open http://localhost:5000/api/v1/

Error: Unable to process URL: file:///home/docs/checkouts/readthedocs.org/user_builds/benchmarking-
suite/checkouts/2.6.1/src/swagger-apiv1.json. Please check that the URL is a valid Swagger api-docs URL and
it is accesible

2.7 Docker

The Benchmarking Suite is also distributed in two different Docker containers. They are available at https://cloud.
docker.com/app/benchsuite/repository/list.

2.7.1 benchsuite-multiexec

This container can be used to run benchmarks in batch mode.

Get (or update) the image with:

docker pull benchsuite/benchsuite-multiexec

Run the container binding the provider and storage (optional) configuration files stored in the local machine and
passing the list of tests to execute as parameters (e.g. idle:idle5):

docker run -v /home/mypc/amazon.conf:/provider.conf -v /home/mypc/storage.conf:/
→˓storage.conf benchsuite/benchsuite-multiexec:dev -p provider.conf -s centos_micro
→˓idle:idle5

2.7. Docker 17

https://github.com/unaguil/sphinx-swaggerdoc
http://localhost:5000/api/v1/
https://cloud.docker.com/app/benchsuite/repository/list
https://cloud.docker.com/app/benchsuite/repository/list
https://hub.docker.com/r/benchsuite/benchsuite-multiexec/

Benchmarking Suite Documentation, Release 2.6.1

In case the storage service is running on the local machine, it could be necessary to use the --net=host option to
reach it.

Alternatively, provider and storage configurations can be specified through environment variables:
BENCHSUITE_PROVIDER and BENCHSUITE_STORAGE_CONFIG respectively.

docker run -e BENCHSUITE_PROVIDER="[myconf]...." -e BENCHSUITE_SERVICE_TYPE="centos_
→˓micro" -v /home/mypc/storage.conf:/storage.conf benchsuite/benchsuite-multiexec:dev
→˓idle:idle5

2.7.2 benchsuite-rest-service

This image contains the Benchmarking Suite REST SERVER (see rest-server-doc section). When started, the con-
tainer exposes the REST service on port 5000.

To run the container, just use the Docker CLI:

docker run benchsuite/benchsuite-rest-server

The service reads the Benchmarking Suite bs-configuration from the / directory of the container. For instance, to
provide a configuration for the storage (to persist results in the db) mount a file in the container named /storage.
conf or /storage.json:

docker run -v my-storage.conf:/storage.conf benchsuite/benchsuite-rest-server

Also providers configuration files can be mounted in the container in the same way:

docker run -v my-provider.conf:/providers/my-provider.conf benchsuite/benchsuite-rest-
→˓server

2.8 Scheduler

The Benchsuite Scheduler allows to schedule the execution of benchmarking tests at pre-fixed intervals. It needs:

• a MongoDB instance to load the schedules (see below), keep its state, log the executions and save the results

• a Docker Swarm instance to launch the tests (the benchsuite-multiexec Docker image is used) and to run the
scheduler itself

The scheduler works in this way:

1. loads from a MongoDB collection the schedules and creates a job for each schedule (it uses APScheduler1 under
the hood). The jobs are kept in sync and refreshed periodically

2. sets-up a timer for each job accordingly with the time interval defined in the schedule

3. when its the time to execute a job, launchs a benchsuite-multiexec and configure it to execute the needed tests
and to store the results on another MongoDB collection

2.8.1 Schedules

The schedules are the main input to the scheduler and models the tests that needs to be scheduled. Each schedule
contains two types of information: the parameters of the tests and the timing information. Each schedule is expected
to be a MongoDB document with this structure:

1 https://apscheduler.readthedocs.io/en/latest/

18 Chapter 2. Topics

https://hub.docker.com/r/benchsuite/benchsuite-rest-service/
https://apscheduler.readthedocs.io/en/latest/
https://apscheduler.readthedocs.io/en/latest/

Benchmarking Suite Documentation, Release 2.6.1

{
"id" : "ec2-123asd-filebench",
"active": true,
"provider_config_secret" : "ec2",
"username" : "ggiammat",
"tests" : [

"filebench",
"ycsb-mysql",
"dacapo"

],
"tags" : [

"scheduled"
],
"env" : {

"MYVAR": "val"
},
"interval" : {

"hours" : 1
},
"benchsuite_additional_opts": ["-v", "--another-opt],
"docker_additional_opts": {"hosts": {"myhost":"10.1.0.1"}

}

It contains:

• id: a unique id

• active: defined whether this schedule should be considered by the scheduler or not

• provider_config_secret: the name (or the id) of the Docker secret that contains the Cloud Provider
configuration. It uses the Docker secrets because the configuration also contains the user credentials to access
the Cloud Provider

• username: an identifier of the user that is requesting the execution. It will be saved also in the benchmarking
results

• tests: a list of test names to execute to be passed to the benchsuite multiexec command (see Command
Line Tool Documentation)

• tags: a list of tags to assign to the results

• env: key-value pairs that define enviornment variables to be available in the execution environment during the
execution

• interval: the time interval between two executions. The accepted keys are: weeks, days, hours,
minutes and seconds. Multiple keys can be combined and if not specified, the default value is 0

• benchsuite_additional_opts: a list of string that will be appended to the benchsuite-multiexec com-
mand line

• docker_additional_opts: a dictionary of additional options to use when creating new Docker services
(see DockerCreateServiceReference2 for a reference of available options)

New schedules are automatically loaded and they are rescheduled if a change is detected.

2.8.2 Configuration

The schduler accepts multiple parameters. Some of them are mandatory, while some other have a default value.

2 https://docker-py.readthedocs.io/en/stable/services.html

2.8. Scheduler 19

https://docker-py.readthedocs.io/en/stable/services.html
https://docker-py.readthedocs.io/en/stable/services.html

Benchmarking Suite Documentation, Release 2.6.1

All the parameters can be specified in a config file in the format

PARAM1=val1
PARAM2=val2
...

or specified as environment variable (the latter overrides the former).

The list of mandatory parameters are:

• DB_HOST: the connection string to the MongDB (e.g. “mongodb://localhost:27017”). It can be omitted only if
the SCHEDULES_DB_HOST, JOBS_DB_HOST and EXEC_DB_HOSTS are provided

• DOCKER_STORAGE_SECRET: the name of the secret that contains the Benchsuite Storage configuration (used
to store results of the tests)

The optional parameters (or the ones that have a default value) are:

• SCHEDULES_SYNC_INTERVAL (default: 60): it the number of seconds between two refresh of the schedules
in the MongoDB collection

• SCHEDULES_JOBS_PRINT_INTERVAL (default: 60): interval time in seconds to print on the console a
report of the scheduled and running jobs

• DB_NAME (default: “benchmarking”): the name of the MongoDB database to use

• SCHEDULES_DB_HOST: if set, overrides the DB_HOST value for the MongoDB instance used to load the
schedules

• SCHEDULES_DB_NAME: if set, overrides the DB_NAME value for the database used to load the schedules

• SCHEDULES_DB_COLLECTION (default: “scheduling”): the name of the collection that contains the sched-
ules

• JOBS_DB_HOST: if set, overrides the DB_HOST value for the MongoDB instance used to store the internal
state of the scheduler

• JOBS_DB_NAME: if set, overrides the DB_NAME value for the database used to store the internal state of the
scheduler

• JOBS_DB_COLLECTION (default: “_apjobs”): the name of the collection that contains the internal state of the
scheduler

• EXEC_DB_HOST: if set, overrides the ‘‘DB_HOST‘ value for the MongoDB instance used to log the executions

• EXEC_DB_NAME: if set, overrides the DB_NAME value for the database used to log the executions

• EXEC_DB_COLLECTION (default: “_apexec”): the name of the collection that contains the logs of the execu-
tions

• DOCKER_HOST (default: “localhost:2375”): the host and port of the Docker Swarm instance (used to create
containers though the Docker API)

• DOCKER_BENCHSUITE_IMAGE (default: “benchsuite/benchsuite-multiexec”): the name of the benchsuite-
multiexec image to use

• DOCKER_GLOBAL_ENV: a comma separated list of environment variables that will be set in the benchsuite-
multiexec container (e.g. “VAR1=val1,var_2=val2”). Useful to set the an http proxy if necessary. Use ‘,’ to
insert a comma in the variables names or values.

• BENCHSUITE_GLOBAL_TAGS: a comma separated list of string that will be set as tags in the benchmarking
results (e.g. “test1,scheduled,automatic”)

20 Chapter 2. Topics

Benchmarking Suite Documentation, Release 2.6.1

• DOCKER_ADDITIONAL_OPTS: a comma separated list of options in the format ‘KEY=VAL’ that will be
added to the Docker service create invocation. VAL is evaluated using json.loads() function. See DockerCreate-
ServiceReference2 for a reference of available options (e.g. ‘hosts={“myhost”:”10.1.0.1”}’)

• BENCHSUITE_ADDITIONAL_OPTS: additional options that will be set on the benchsuite-multiexec com-
mand line (e.g. “-vvv –failonerror”)

2.8.3 Benchsuite Scheduler Docker image

The simplest way to run the Benchsuite Scheduler is to run the benchsuite/benchsuite-scheduler Docker
image specifying the configuration parameters as envrionment variables:

docker run -e DB_HOST=mongodb://172.17.0.1:27017/ -e DOCKER_STORAGE_SECRET=storage -e
→˓DOCKER_HOST=172.17.0.1:2375 benchsuite/benchsuite-scheduler

Alternatively, the configuration can be specified in the /tmp/config file.

docker run -v /home/mypc/scheduler.conf:/tmp/config benchsuite/benchsuite-scheduler

The two approaches can be also be mixed.

2.9 API Reference

class benchsuite.core.controller.BenchmarkingController(config_folder=None, stor-
age_config_file=None)

class benchsuite.core.model.benchmark.Benchmark(tool_id, workload_id, tool_name,
workload_name, work-
load_description)

A Benchmark

2.10 Changelog

This Changelog reports the main changes occuring in the Benchmarking Suite. The versions of the Benchmarking
Suite (also called Milestones) refers to the versions of the Docker containers and the Documentation, while the versions
of the single modules are reported in each entry of the changelog.

The Unreleased section contains changes already released in the Python modules, but not yet included in any Mile-
stone.

2.10.1 Unreleased

• TODO: [stdlib] support creation of keypairs

• TODO: [scheduler] add config parameter to choose whether log successful executions or not

2.10.2 Benchmarking Suite v. 2.6.1

Release date: 2018-01-22

• [stdlib-2.4.3] support for ‘auth_url’, ‘auth_version’ and ‘region’ provider config parameters

2.9. API Reference 21

https://docker-py.readthedocs.io/en/stable/services.html
https://docker-py.readthedocs.io/en/stable/services.html
https://hub.docker.com/r/benchsuite/benchsuite-scheduler/

Benchmarking Suite Documentation, Release 2.6.1

2.10.3 Benchmarking Suite v. 2.6.0

Release date: 2018-01-16

• [scheduler-1.3.0] added configuration parameters to add additional Docker options to the containers created by
the scheduler

2.10.4 Benchmarking Suite v. 2.5.1

Release date: 2018-01-15

• fixed the URL to download the DaCapo benchmark

2.10.5 Benchmarking Suite v. 2.5.0

Release date: 2017-12-18

• [backends-2.3.0] MongoDB - storing start time as date object (previously it was a timestamp)

• [scheduler-1.2.0] Support for using Docker unix socket instead of the tcp port

• [core-2.3.1] Fixed DEFAULT section not read in the Json configuration files

• [stdlib-2.4.1] Fixed serialization issue of the LibcloudComputeProvider objects

• [cli-2.1.2] Improvements and fixes to the “shell” command

2.10.6 Benchmarking Suite v. 2.4.0

Release date: 2017-12-04

• [stdlib-2.4.0] randomize names of VMs created by the Benchmarking Suite

• [stdlib-2.4.0] set security groups in openstack

• [scheduler-1.1.0] add config parameter to add global env, tags and additional params

• [scheduler-1.1.0] added the “active” parameter in the schedules

• [core-2.3.0, backends-2.2.0] added storage of execution errors in the database

2.10.7 Benchmarking Suite v. 2.3.1

Release date: 2017-11-21

• [core-2.2.4] fixed support for the –failonerror parameter from the command line

2.10.8 Benchmarking Suite v. 2.3.0

Release date: 2017-11-20

• [core-2.2.2] considering only providers configuration files with extension .json and .conf

• [core-2.2.3] duration is now considered as a metric

• [stdlib-2.3.0] metrics renamed to make them coherent in different tests

• [stdlib-2.3.0] added multiple workloads in the CFD benchmark

22 Chapter 2. Topics

Benchmarking Suite Documentation, Release 2.6.1

• [cli-2.1.1] added –failonerror for the multiexec command. The option allows to not continue with next test if the
current one fails

• [scheduler-1.0.0] first release of the Benchsuite Scheduler

2.10.9 Benchmarking Suite v. 2.2.2

Release date: 2017-10-20

This patch release fixes some minor bugs found in the code:

• fixed creation of new sessions if the provider configuration is in json format

• fixed default error handling in the REST server (now the full exception message - and not only “Internal Server
Error” is sent back to the caller)

• fixed parsing of “network” and “security_group” parameters: now they can be either the id or the name of the
object

• fixed crash of some Filebench workloads on Amazon EC2 using the micro instances

2.10.10 Benchmarking Suite v. 2.2.1

Release date: 2017-10-18

This patch release fixes an outdated information in the REST server documentation page

2.10.11 Benchmarking Suite v. 2.2.0

Release date: 2017-10-18

This minor release introduces following improvements:

• support for json configuration files (only for providers and storage at the moment)

• better handling of network configuration parameters in the provider configuration

2.10.12 Benchmarking Suite v. 2.1.0

Release date: 2017-10-13

This minor release introduces some new functionalities and improvement to the tool:

• support for MongoDB backend

• list of available benchmarks and cloud providers (in Cli and REST)

• field “name” in workload sections in configuration files

• return node_id (in case of OpenStack) in the REST calls

• accept provider configuration as string parameter

• add tags to sessions/executions (e.g. for the user-id in the QET)

• provider and storage configurations can be also specified via command line or environment variable

• improvement and tuning of YCSB, Filebench and DaCapo benchmarks

2.10. Changelog 23

Benchmarking Suite Documentation, Release 2.6.1

2.10.13 Benchmarking Suite v. 2.0.0

Release date: 2017-08-01

This is a major release version of the Benchmarking Suite that introduces several changes and improvements with
respect to the Benchmarking Suite 1.x versions.

In the Core library:

• a complete refactoring of the code to improve the parameterization and modularization

• introduction of benchmarking sessions

In the StdLib library:

• for Benchmarks:

– NEW CFD Benchmark

– Updated Filebench and YCSB tools versions

• for Cloud Providers:

– NEW FIWARE FILAB connector

– Updated Amazon EC2 to work with VPCs

The Cli and REST modules are completely new and the previous implmentation have been abandoned.

2.11 Development

This section explains the development, integration and distritbuion process of the Benchmarking Suite. Intended
readers are developers.

2.11.1 Continuous Integration

TBD

2.11.2 Release Steps

Checklist to release the Benchmarking Suite

1. Commit any not-committed file on the workspace

2. Identify whcih modules needs to be released (see commits since the latest release, see the changelog)

3. Update the changelog file if not done (use messages in the commits as reference)

Modules Release

For each module to release:

1. increase the version number in the __init__py file

2. create the source distribution package and upload on PYPI Testing (remove the -r pypitest to upload on
the official PYPI)

24 Chapter 2. Topics

Benchmarking Suite Documentation, Release 2.6.1

python setup.py sdist upload -r pypitest

3. to test the release from PYPI test:

create a new virtual env
virtualenv -p /usr/bin/python3.5 venvXX

activate the virtualenv
source venvXX/bin/activate

install the modules to test
pip install -v -i https://testpypi.python.org/pypi --extra-index-url https://pypi.
→˓python.org/simple/ -U benchsuite.core

4. upload the distribution packages on PYPI

python setup.py sdist upload

3. commit and push everything on GitHub

4. create a release on GitHub (this will also create a tag)

Milestone Release

1. Check all the modules and the versions that will be included. Release modules if necessary

1. In benchsuite-docs, update the version in conf.py

2. Update the changelog.rst with the changelog for this milestone

6. Commit the documentation on GitHub and create a tag. This will also create a new tag in readthedocs

7. Update the “.release” Dockerfiles in benchsuite-docker project

8. Commit benchsuite-docker and create a new tag. This will trigger the creation of a new tag for docker images

2.11.3 Documentation

Documentation is automatically built on ReadTheDocs at every commit

2.11.4 Docker

Docker containers are built automatically from Dockerfiles located in the benchsuite-docker repository.

To create a new tag of Docker images, create a tag in the Git repository that starts with “v” (e.g. “v2.0”, “v1.2.3”,
“v1.2.3-beta1”, . . .)

2.12 FAQs

2.12.1 How to clear all stored benchmarking sessions?

Sessions are stored in a file in ~/.local/share/benchmarking-suite/sessions.dat. Deleting that file,
all sessions will be removed. This should be an extreme solution, the more correct way to delete a session is to use the

2.12. FAQs 25

Benchmarking Suite Documentation, Release 2.6.1

destroy-session command.

2.12.2 How to clear all stored executions?

Executions are stored along with the sessions. See previous question: How to clear all stored benchmarking sessions?.

26 Chapter 2. Topics

CHAPTER 3

Contacts

Main contact person for the Benchmarking Suite is:

Person Gabriele Giammatteo

Company Research and Development Laboratory Engineering Ingegneria Informatica S.p.A.

Address via Riccardo Morandi, 32 00148 Rome, Italy

e-mail gabriele.giammatteo@eng.it

For bugs, features and other code-related requests the issue tracker can be used at: https://github.com/
benchmarking-suite/benchsuite-core/issues

27

mailto:gabriele.giammatteo@eng.it
https://github.com/benchmarking-suite/benchsuite-core/issues
https://github.com/benchmarking-suite/benchsuite-core/issues

Benchmarking Suite Documentation, Release 2.6.1

28 Chapter 3. Contacts

CHAPTER 4

References

29

Benchmarking Suite Documentation, Release 2.6.1

30 Chapter 4. References

Python Module Index

b
benchsuite.core.model.benchmark, 21

31

Benchmarking Suite Documentation, Release 2.6.1

32 Python Module Index

Index

B
Benchmark (class in benchsuite.core.model.benchmark),

21
BenchmarkingController (class in bench-

suite.core.controller), 21
benchsuite.core.model.benchmark (module), 21

33

	License
	Topics
	Quick Start
	Architecture
	Benchmarks
	Executions
	Command line tool
	REST Server
	Docker
	Scheduler
	API Reference
	Changelog
	Development
	FAQs

	Contacts
	References
	Python Module Index

