

Welcome to Benchmarking Suite’s documentation!

The Benchmarking Suite is an all-in-one solution for benchmarking cloud services simulating different typical application behaviours and comparing the results on different cloud providers. It wraps a set of representative, de-facto standard and widely used third-party benchmarking tools and relies on them for the workload simulation and performance measurement.

The Benchmarking Suite automates the benchmarking process managing the allocation and de-allocation of necessary resources, the installation and execution of the benchmarking tools and the storage of data.

It has been designed to be extendible and allow an easy integration of new third-party benchmarking tools and cloud services. Data collected and stored during the tests execution is homogenized and aggregated on different higher-level metrics (e.g. average value) allowing performance comparisons among different providers and/or different dates.

The Benchmarking Suite development has been funded by two European reasearch and innovation projects: ARTIST [http://www.artist-project.eu/] 1 and CloudPerfect [https://cloudperfect.eu/] 2.

License

The Benchmarking Suite is an open source product released under the Apache License v2.0 [https://www.apache.org/licenses/LICENSE-2.0] 3.

Topics

	Quick Start
	Install

	Configure

	Run!

	Go REST

	References

	Architecture
	Domain Model

	Software Modules

	Benchmarks
	Benchsuite StdLib

	Executions
	Single Step Execution

	Step-by-Step Execution

	Command line tool
	Install

	Usage and Examples

	Command Line Tool Documentation

	REST Server
	Quick Start

	Swagger Doc

	Docker
	benchsuite-multiexec

	benchsuite-rest-service

	Scheduler
	Schedules

	Configuration

	Benchsuite Scheduler Docker image

	API Reference

	Changelog
	Unreleased

	Benchmarking Suite v. 2.5.0

	Benchmarking Suite v. 2.4.0

	Benchmarking Suite v. 2.3.1

	Benchmarking Suite v. 2.3.0

	Benchmarking Suite v. 2.2.2

	Benchmarking Suite v. 2.2.1

	Benchmarking Suite v. 2.2.0

	Benchmarking Suite v. 2.1.0

	Benchmarking Suite v. 2.0.0

	Development
	Continuous Integration

	Release Steps

	Documentation

	Docker

	FAQs
	How to clear all stored benchmarking sessions?

	How to clear all stored executions?

Contacts

Main contact person for the Benchmarking Suite is:

	Person

	Gabriele Giammatteo

	Company

	Research and Development Laboratory
Engineering Ingegneria Informatica S.p.A.

	Address

	via Riccardo Morandi, 32
00148 Rome, Italy

	e-mail

	gabriele.giammatteo@eng.it

For bugs, features and other code-related requests the issue tracker can be used at:
https://github.com/benchmarking-suite/benchsuite-core/issues

References

	1

	http://www.artist-project.eu/

	2

	https://cloudperfect.eu/

	3

	https://www.apache.org/licenses/LICENSE-2.0

Quick Start

Install

The Benchmarking Suite is package and distributed through PyPI [https://python.org/pypi/benchsuite.core/] 1.

Important

The Benchmarking Suite requires Python 3.5+. If it is not the default version in you system, it is recommended
to create a virtualenv:

virtualenv -p /usr/bin/python3.5 benchmarking-suite
source benchsuite/bin/activate

Let’s start by installing the command line tool and the standard library:

$ pip install benchsuite.stdlib benchsuite.cli

This will make available the benchsuite bash command and will copy the standard benchmark tests configuration into the default configuration location (located under ~/.config/benchmarking-suite/benchmarks).

Configure

Before executing a benchmark, we have to configure at least one Service Provider. The benchsuite.stdlib provides some template (located under ~/.config/benchmarking-suite/providers).

For instance, for Amazon EC2 we can start from the template and complete it:

cp ~/.config/benchmarking-suite/providers/amazon.conf.example my-amazon.conf

Open and edit my-amazon.conf

[provider]
class = benchsuite.provider.libcloud.LibcloudComputeProvider

type = ec2

access_id = <your access_id>
secret_key = <your secret_key>

region = us-west-1
ex_security_group_ids = <id of the security group>
ex_subnet = <id of the subnet>

[ubuntu_micro]
image = ami-73f7da13
size = t2.micro
key_name = <your keypair name>
key_path = <path to your private key file>
vm_user = ubuntu
platform = ubuntu_16

In this case we will provide this file directly to the command line tool, but we can also configure our own configuration directory, put all our service providers and benchmarking tests configuration there and refer to them by name (see XXX seciton).

Run!

Now you can execute your first benchmark test:

benchsuite multiexec --provider my-amazon.conf --service ubuntu_micro ycsb-mongodb:WorkloadA

Go REST

Enable the REST server is very simple:

pip install benchsuite.rest
benchsuite-rest start
tail -f benchsuite-rest.log

References

	1

	https://python.org/pypi/benchsuite.core/

Architecture

The Benchmarking Suite is composed by five main components summarized in the following diagram:

[image: _images/architecture.svg]
	Core: defines the main model, the extension framework for the benchmarks and the Cloud providers and the main data representation types;

	REST: a REST server to access all the Benchmarking Suite functionalities;

	CLI: a command line tool (bash-compatible) to access all the Benchmarking Suite functionalities;

	Std Library: a set of selected benchmark tools, including their configurations and the implementation of the required wrapping scripts for the execution and the parsing of results;

	Backend Connectors: a set of connectors to store the Benchmarking Suite executions results on different storage technologies (e.g. MySQL, MongoDB).

The Core component is the only required component, the other components are optional. However the Benchmarking Suite installation will miss the functionalities of not-installed modules (e.g. if the Backend Connectors is not installed, the execution results will not be stored).

The User’s Cloud Configuration is the required configuration of the Cloud Providers that the Benchmarking Suite needs to be able to access the Target Cloud Provider. It can be specified either as configuration file or as parameter in the execution requests (through the REST or CLI components). Refer to section Service Providers for further details

Domain Model

The core concept in the Benchmarking Suite is the BenchmarkExecution. It represents the execution of a Benchmark test against an ExecutionEnvironment provided from a ServiceProvider and produces an ExecutionResult.

[image: _images/[ExecutionEnvironment]*-1[ServiceProvider],[BenchmarkExecution]*-1[Benchmark],[BenchmarkExecution]*-1[ExecutionEnvironment],[BenchmarkExecution]1-1[ExecutionResult].png]

Note

For instance, following this model we can easily model the execution of YCSB.WorkloadA (the Benchmark) on the Virtual Machine with ip=50.1.1.1 (the ExecutionEnvironment) provided by Amazon EC2 (the ServiceProvider).

Since it is frequent to execute multiple tests against the same Service Provider, the Benchmarking Suite has also the concept of BenchmarkingSession. that can gropu one or more executions of the ServiceProvider, using the same ExecutionEnvironment.

[image: _images/[BenchmarkSession]-*[BenchmarkExecution],[BenchmarkSession]-1[ExecutionEnvironment],[BenchmarkExecution]*-1[ExecutionEnvironment],[ExecutionEnvironment]-1[ServiceProvider].png]

Software Modules

In order to address all the different use cases and the installation necessities, the Benchmarking Suite is distributed in five different software modules that can be installed separately:

	benchsuite.core

	the core library (all other modules depend on it) with the definition of
types and the fundamental framework for the extension of the Benchmarking
Suite

	benchsuite.stdlib

	a collection of benchmark tests configuration files and support for some Cloud
Providers

	benchsuite.cli

	a bash command line tool to manage tests and results

	benchsuite.rest

	an HTTP server and a REST API to interact with the Benchmarking Suite

	benchsuite.backend

	connectors for the supported storage backends

Benchmarks

Benchsuite StdLib

The Benchmarking Suite comes with a set of benchmark tests ready to be executed included in the StdLib module.
The following table summarizes the tools available and their compatibility with different operating system.

	Tool

	Version

	CentOS

	Ubuntu 14

	CFD

	1.0

	✗

	✓

	DaCapo

	9.12

	✓

	✓

	Filebench

	1.4.9.1

	✓

	✓

	YCSB-MySQL

	0.12.0

	✓

	✓

	YCSB-MongoDB

	0.11.0

	✓

	✓

Metrics

Each tool produces a set of metrics that are extracted by the Benchmarking Suite and included in the results database. The following table reports for each tool the metrics extracted and a brief description of its meaning.

	Tool

	Metric

	Unit

	Description

	CFD

	duration

	s

	The overall duration of the test

	Filebench 1

	duration

	s

	The overall duration of the test

	ops

	
	The sum of all the operations (of any type) executed

	ops_throughput

	ops/s

	The average number of operations executed per second

	throughput

	MB/s

	The average throughput in MegaByte of the operations

	cputime

	µs

	The average cpu time in µs taken by each operation

	latency_avg

	µs

	The average latency of each operation

	YCSB 2

	duration

	s

	The overall duration of the test

	ops_throughput

	ops/s

	The average number of operation per second executed

	read_ops

	
	The number of read operations executed

	read_latency_avg

	µs

	The average latency for the read operations

	read_latency_min

	µs

	The minimum latency for the read operations

	read_latency_max

	µs

	The maximum latency for the read operations

	read_latency_95

	µs

	The maximum latency for the 95% of the read operations

	read_latency_99

	µs

	The maximum latency for the 99% of the read operations

	insert_ops

	
	The number of insert operations executed

	insert_latency_avg

	µs

	The average latency for the insert operations

	insert_latency_min

	µs

	The minimum latency for the insert operations

	insert_latency_max

	µs

	The maximum latency for the insert operations

	insert_latency_95

	µs

	The maximum latency for the 95% of the insert operations

	insert_latency_99

	µs

	The maximum latency for the 99% of the insert operations

	update_ops

	
	The number of update operations executed

	update_latency_avg

	µs

	The average latency for the update operations

	update_latency_min

	µs

	The minimum latency for the update operations

	update_latency_max

	µs

	The maximum latency for the update operations

	update_latency_95

	µs

	The maximum latency for the 95% of the update operations

	update_latency_99

	µs

	The maximum latency for the 99% of the update operations

	DaCapo

	duration

	s

	The overall duration of the test

	1

	More about the Filebench metrics can be found at https://github.com/filebench/filebench/wiki/Collected-metrics

	2

	More about the YCSB metrics can be found at https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload

Executions

Single Step Execution

The single step execution executes one or more benchmarks

Step-by-Step Execution

The Step-by-Step execution allows to

This is of particular interest if, during the execution of the benchmarks, it is needed to run other tools like profilers

Command line tool

Install

The Benchmarking Suite Command line tool can be installed with:

pip install benchsuite.cli

If the installation was successful, the benchsuite command should be in your path.

Usage and Examples

Create a new session

To create a new session, the Benchmarking Suite needs two information: the provider configuration and the service type. The command line tool offers multiple options to specify these parameters.

Provider Configuration

There are different alternatives:

	specify a name with the --provider option (e.g. --provider myamazon). In this case, a provider configuration file named <name>.conf will be searched in the configuration path;

	specify a filename in the --provider option (e.g. --provider /path/myamazon.conf). The configuration file specified will be used;

	store the provider configuration in the BENCHSUITE_PROVIDER environment variable.

As example, the following invocations load the same provider configuration:

$ benchsuite new-session --provider my-amazon.conf ...

$ benchsuite new-session --provider $BENCHSUITE_CONFIG_FOLDER/providers/my-amazon.conf ...

$ export BENCHSUITE_PROVIDER=```cat $BENCHSUITE_CONFIG_FOLDER/providers/my-amazon.conf```
$ benchsuite new-session ...

Service Type

The service type can be specified using the --service-type option (e.g. --service-type ubuntu_micro). The value of the service type must be one of the ones defined in the provider configuration. Alternatively the ``BENCHSUITE_SERVICE_TYPE` enviornment variable can be used.

If neither the --service-type option nor the ``BENCHSUITE_SERVICE_TYPE` enviornment variable are specified and the provider configuration defines only ONE service type, that one will be used, otherwise the invocation will fail.

Command Line Tool Documentation

This is an autogenerated documentation from the Python argparse options.

usage: benchsuite [-h] [--verbose] [--quiet] [--config CONFIG]
 {shell,new-session,new-exec,prepare-exec,run-exec,list-sessions,list-providers,list-benchmarks,destroy-session,list-execs,collect-exec,multiexec}
 ...

Named Arguments

	--verbose, -v

	print more information (3 levels)

	--quiet, -q

	suppress normal output

Default: False

	--config, -c

	foo help

Sub-commands:

shell

Starts an interactive shell

benchsuite shell [-h]

new-session

Creates a new benchmarking session

benchsuite new-session [-h] [--provider PROVIDER]
 [--service-type SERVICE_TYPE] [--property PROPERTY]
 [--user USER] [--tag TAG]

Named Arguments

	--provider, -p

	The name for the service provider configuration or the filepath of the provider configuration file. Alternatively, the provider configuration can be specified in the environment variable BENCHSUITE_PROVIDER (the content of the variable must be the actual configuration not the filepath)

	--service-type, -s

	The name of one of the service types defined in the provider configuration. Alternatively, it can be specified in the BENCHSUITE_SERVICE_TYPE environment varaible

	--property, -P

	Add a user defined property to the session. The property must be expressed in the format <name>=<value>

	--user, -u

	sets the “user” property. It is a shortcut for “–property user=<name>

	--tag, -t

	sets one or more session tags. Internally, tags are stored as properties

new-exec

Creates a new execution

benchsuite new-exec [-h] session tool workload

Positional Arguments

	session

	a valid session id

	tool

	a valid benchmarking tool

	workload

	a valid benchmarking tool workload

prepare-exec

Executes the install scripts for an execution

benchsuite prepare-exec [-h] id

Positional Arguments

	id

	a valid id of the execution

run-exec

Executes the execute scripts for an execution

benchsuite run-exec [-h] [--storage-config STORAGE_CONFIG] [--async] id

Positional Arguments

	id

	a valid id of the execution

Named Arguments

	--storage-config, -r

	Specify a custom location for the storage configuration file

	--async

	start the execution of the scripts and return (do not wait for the execution to finish)

Default: False

list-sessions

a help

benchsuite list-sessions [-h]

list-providers

a help

benchsuite list-providers [-h]

list-benchmarks

a help

benchsuite list-benchmarks [-h]

destroy-session

a help

benchsuite destroy-session [-h] id

Positional Arguments

	id

	bar help

list-execs

lists the executions

benchsuite list-execs [-h]

collect-exec

collects the outputs of an execution

benchsuite collect-exec [-h] id

Positional Arguments

	id

	the execution id

multiexec

Execute multiple tests in a single benchmarking session

benchsuite multiexec [-h] [--provider PROVIDER] [--service-type SERVICE_TYPE]
 [--storage-config STORAGE_CONFIG] [--property PROPERTY]
 [--user USER] [--tag TAG] [--failonerror]
 tests [tests ...]

Positional Arguments

	tests

	one or more tests in the format <tool>[:<workload>]. If workload is omitted, all workloads defined for that tool will be executed

Named Arguments

	--provider, -p

	The name for the service provider configuration or the filepath of the provider configuration file

	--service-type, -s

	The name of one of the service types defined in the provider configuration. If not specified, all service types will be used

	--storage-config, -r

	Specify a custom location for the storage configuration file

	--property, -P

	Add a user defined property to the session. The property must be expressed in the format <name>=<value>

	--user, -u

	sets the “user” property. It is a shortcut for “–property user=<name>

	--tag, -t

	sets one or more session tags. Internally, tags are stored as properties

	--failonerror, -e

	If set exit immediately if one of the tests fail. It is false by default

Default: False

REST Server

Quick Start

This short tutorial shows how to use the API to perform a step-by-step benchmarking test.

First, we need to create a new session. This can be done making a POST request to /api/v1/sessions providing the provider name and service type.

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{\
 "provider": "my-provider",\
 "service": "my-service-type"\
}' http://localhost:5000/api/v1/sessions

Alternatively, the provider configuration can be provided directly in the request payload. For instance, a typical request to create a benchmarking session for Amazon EC2 would be:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{\
 "config": {\
 "provider": {\
 "class": "benchsuite.stdlib.provider.libcloud.LibcloudComputeProvider",\
 "name": "ec2-ggiammat",\
 "driver": "ec2",\
 "access_id": "<your_access_id>",\
 "secret_key": "<your_key>",\
 "region": "us-west-1"\
 },\
 "centos_micro": {\
 "image": "ami-327f5352",\
 "size": "t2.micro",\
 "vm_user": "ec2-user",\
 "platform": "centos_6",\
 "key_name": "<keypair_name>",\
 "ssh_private_key": "----BEGIN RSA PRIVATE KEY-----\nIIE... [...] ...6alL\n-----END RSA PRIVATE KEY-----"\
 }\
 }\
}' http://localhost:5000/api/v1/sessions/

Important

Providing the configuration directly in the request payload, your credentials will be sent over the network unencrypted. Do it only when the server is running in a trusted environment!

Note

The ssh private key msut be provided on a sinlge line (json does not support multiline values), but the line ends must be preserved. A convenient method to generate this string in bash is:

sed -E ':a;N;$!ba;s/\r{0,1}\n/\\n/g' my-key.pem

The response will contain the id of the session created:

{
 "id": "58920c6c-c57c-4c55-a227-0ab1919e83be",
 [...]
}

Now we can create a new benchmarking test execution in the session (note that the id of the session is used in the request URL:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{ \
 "tool": "idle", \
 "workload": "idle30" \
}' http://localhost:5000/api/v1/sessions/58920c6c-c57c-4c55-a227-0ab1919e83be/executions/

The response will contain (along with other execution details) the id of the execution:

{
 "id": "253d9544-b3db-11e7-8bc2-742b62857160",
 [...]
}

With this execution id we can now invoke the prepare step that will create the resources on the provider, install the necessary tools and load the workloads:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' http://localhost:5000/api/v1/executions/253d9544-b3db-11e7-8bc2-742b62857160/prepare

Finally, we can invoke the run step:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' http://localhost:5000/api/v1/executions/253d9544-b3db-11e7-8bc2-742b62857160/run

The response of the prepare and run steps contain the start time and the duration of the operation:

{
 "started": "2017-10-18 08:18:33",
 "duration": "32.28253793716431"
}

The same session can be used to run multiple executions. At the end, the session and the resources created (e.g. VM) can be destroyed using the DELETE operation:

curl -X DELETE --header 'Accept: application/json' http://localhost:5000/api/v1/sessions/58920c6c-c57c-4c55-a227-0ab1919e83be

Swagger Doc

This documentation is autogenerated from the Swagger API Specification using sphinx-swaggerdoc [https://github.com/unaguil/sphinx-swaggerdoc].

A better documentation for the REST API can be found directly in the REST Server:

	Launch the server

	Open http://localhost:5000/api/v1/

sessions

POST /sessions/{session_id}/executions/

Parameters

	Name

	Position

	Description

	Type

	payload

	body

	

	

	X-Fields

	header

	An optional fields mask

	string

	session_id

	path

	

	string

GET /sessions/{session_id}/executions/

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

	session_id

	path

	

	string

DELETE /sessions/{session_id}

Parameters

	Name

	Position

	Description

	Type

	session_id

	path

	The id of the session

	string

GET /sessions/{session_id}

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

	session_id

	path

	The id of the session

	string

POST /sessions/

Parameters

	Name

	Position

	Description

	Type

	payload

	body

	

	

	X-Fields

	header

	An optional fields mask

	string

GET /sessions/

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

executions

GET /executions/{exec_id}

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

	exec_id

	path

	

	string

POST /executions/{exec_id}/run

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

	exec_id

	path

	

	string

POST /executions/{exec_id}/prepare

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

	exec_id

	path

	

	string

GET /executions/

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

providers

GET /providers/

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

default

benchmarks

GET /benchmarks/

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

GET /benchmarks/{benchmark_id}

Parameters

	Name

	Position

	Description

	Type

	X-Fields

	header

	An optional fields mask

	string

	benchmark_id

	path

	

	string

Docker

The Benchmarking Suite is also distributed in two different Docker containers. They are available at https://cloud.docker.com/app/benchsuite/repository/list.

benchsuite-multiexec

[image: _images/benchsuite-multiexec.svg]
 [https://hub.docker.com/r/benchsuite/benchsuite-multiexec/]This container can be used to run benchmarks in batch mode.

Get (or update) the image with:

docker pull benchsuite/benchsuite-multiexec

Run the container binding the provider and storage (optional) configuration files stored in the local machine and passing the list of tests to execute as parameters (e.g. idle:idle5):

docker run -v /home/mypc/amazon.conf:/provider.conf -v /home/mypc/storage.conf:/storage.conf benchsuite/benchsuite-multiexec:dev -p provider.conf -s centos_micro idle:idle5

In case the storage service is running on the local machine, it could be necessary to use the --net=host option to reach it.

Alternatively, provider and storage configurations can be specified through environment variables: BENCHSUITE_PROVIDER and BENCHSUITE_STORAGE_CONFIG respectively.

docker run -e BENCHSUITE_PROVIDER="[myconf]...." -e BENCHSUITE_SERVICE_TYPE="centos_micro" -v /home/mypc/storage.conf:/storage.conf benchsuite/benchsuite-multiexec:dev idle:idle5

benchsuite-rest-service

[image: _images/benchsuite-rest-service.svg]
 [https://hub.docker.com/r/benchsuite/benchsuite-rest-service/]This image contains the Benchmarking Suite REST SERVER (see REST Server section). When started, the container exposes the REST service on port 5000.

To run the container, just use the Docker CLI:

docker run benchsuite/benchsuite-rest-server

The service reads the Benchmarking Suite bs-configuration from the / directory of the container. For instance, to provide a configuration for the storage (to persist results in the db) mount a file in the container named /storage.conf or /storage.json:

docker run -v my-storage.conf:/storage.conf benchsuite/benchsuite-rest-server

Also providers configuration files can be mounted in the container in the same way:

docker run -v my-provider.conf:/providers/my-provider.conf benchsuite/benchsuite-rest-server

Scheduler

The Benchsuite Scheduler allows to schedule the execution of benchmarking tests at pre-fixed intervals. It needs:

	a MongoDB instance to load the schedules (see below), keep its state, log the executions and save the results

	a Docker Swarm instance to launch the tests (the benchsuite-multiexec Docker image is used) and to run the scheduler itself

The scheduler works in this way:

	loads from a MongoDB collection the schedules and creates a job for each schedule (it uses APScheduler [https://apscheduler.readthedocs.io/en/latest/] 1 under the hood). The jobs are kept in sync and refreshed periodically

	sets-up a timer for each job accordingly with the time interval defined in the schedule

	when its the time to execute a job, launchs a benchsuite-multiexec and configure it to execute the needed tests and to store the results on another MongoDB collection

Schedules

The schedules are the main input to the scheduler and models the tests that needs to be scheduled. Each schedule contains two types of information: the parameters of the tests and the timing information. Each schedule is expected to be a MongoDB document with this structure:

{
 "id" : "ec2-123asd-filebench",
 "active": true,
 "provider_config_secret" : "ec2",
 "username" : "ggiammat",
 "tests" : [
 "filebench",
 "ycsb-mysql",
 "dacapo"
],
 "tags" : [
 "scheduled"
],
 "env" : {
 "MYVAR": "val"
 },
 "interval" : {
 "hours" : 1
 }
}

It contains:

	id: a unique id

	active: defined whether this schedule should be considered by the scheduler or not

	provider_config_secret: the name (or the id) of the Docker secret that contains the Cloud Provider configuration. It uses the Docker secrets because the configuration also contains the user credentials to access the Cloud Provider

	username: an identifier of the user that is requesting the execution. It will be saved also in the benchmarking results

	tests: a list of test names to execute to be passed to the benchsuite multiexec command (see Command Line Tool Documentation)

	tags: a list of tags to assign to the results

	env: key-value pairs that define enviornment variables to be available in the execution environment during the execution

	interval: the time interval between two executions. The accepted keys are: weeks, days, hours, minutes and seconds. Multiple keys can be combined and if not specified, the default value is 0

New schedules are automatically loaded and they are rescheduled if a change is detected.

Configuration

The schduler accepts multiple parameters. Some of them are mandatory, while some other have a default value.

All the parameters can be specified in a config file in the format

PARAM1=val1
PARAM2=val2
...

or specified as environment variable (the latter overrides the former).

The list of mandatory parameters are:

	DB_HOST: the connection string to the MongDB (e.g. “mongodb://localhost:27017”). It can be omitted only if the SCHEDULES_DB_HOST, JOBS_DB_HOST and EXEC_DB_HOSTS are provided

	DOCKER_STORAGE_SECRET: the name of the secret that contains the Benchsuite Storage configuration (used to store results of the tests)

The optional parameters (or the ones that have a default value) are:

	SCHEDULES_SYNC_INTERVAL (default: 60): it the number of seconds between two refresh of the schedules in the MongoDB collection

	SCHEDULES_JOBS_PRINT_INTERVAL (default: 60): interval time in seconds to print on the console a report of the scheduled and running jobs

	DB_NAME (default: “benchmarking”): the name of the MongoDB database to use

	SCHEDULES_DB_HOST: if set, overrides the DB_HOST value for the MongoDB instance used to load the schedules

	SCHEDULES_DB_NAME: if set, overrides the DB_NAME value for the database used to load the schedules

	SCHEDULES_DB_COLLECTION (default: “scheduling”): the name of the collection that contains the schedules

	JOBS_DB_HOST: if set, overrides the DB_HOST value for the MongoDB instance used to store the internal state of the scheduler

	JOBS_DB_NAME: if set, overrides the DB_NAME value for the database used to store the internal state of the scheduler

	JOBS_DB_COLLECTION (default: “_apjobs”): the name of the collection that contains the internal state of the scheduler

	EXEC_DB_HOST: if set, overrides the ``DB_HOST` value for the MongoDB instance used to log the executions

	EXEC_DB_NAME: if set, overrides the DB_NAME value for the database used to log the executions

	EXEC_DB_COLLECTION (default: “_apexec”): the name of the collection that contains the logs of the executions

	DOCKER_HOST (default: “localhost:2375”): the host and port of the Docker Swarm instance (used to create containers though the Docker API)

	DOCKER_BENCHSUITE_IMAGE (default: “benchsuite/benchsuite-multiexec”): the name of the benchsuite-multiexec image to use

	DOCKER_GLOBAL_ENV: a comma separated list of environment variables that will be set in the benchsuite-multiexec container (e.g. “VAR1=val1,var_2=val2”). Useful to set the an http proxy if necessary. Use ‘,’ to insert a comma in the variables names or values.

	DOCKER_GLOBAL_TAGS: a comma separated list of string that will be set as tags in the benchmarking results (e.g. “test1,scheduled,automatic”)

	DOCKER_ADDITIONAL_OPTS: a string that allows to specify additional command line options that will be appended to the benchsuite-multiexec container command (e.g. “-vvv –failonerror”)

Benchsuite Scheduler Docker image

[image: _images/benchsuite-scheduler.svg]
 [https://hub.docker.com/r/benchsuite/benchsuite-scheduler/]The simplest way to run the Benchsuite Scheduler is to run the benchsuite/benchsuite-scheduler Docker image specifying the configuration parameters as envrionment variables:

docker run -e DB_HOST=mongodb://172.17.0.1:27017/ -e DOCKER_STORAGE_SECRET=storage -e DOCKER_HOST=172.17.0.1:2375 benchsuite/benchsuite-scheduler

Alternatively, the configuration can be specified in the /tmp/config file.

docker run -v /home/mypc/scheduler.conf:/tmp/config benchsuite/benchsuite-scheduler

The two approaches can be also be mixed.

	1

	https://apscheduler.readthedocs.io/en/latest/

API Reference

	
class benchsuite.core.controller.BenchmarkingController(config_folder=None, storage_config_file=None)

	

	
class benchsuite.core.model.benchmark.Benchmark(tool_id, workload_id, tool_name, workload_name, workload_description)

	A Benchmark

Changelog

This Changelog reports the main changes occuring in the Benchmarking Suite. The versions of the Benchmarking Suite (also called Milestones) refers to the versions of the Docker containers and the Documentation, while the versions of the single modules are reported in each entry of the changelog.

The Unreleased section contains changes already released in the Python modules, but not yet included in any Milestone.

Unreleased

	TODO: [stdlib] support creation of keypairs

	TODO: [scheduler] add config parameter to choose whether log successful executions or not

Benchmarking Suite v. 2.5.0

Release date: 2017-12-18

	[backends-2.3.0] MongoDB - storing start time as date object (previously it was a timestamp)

	[scheduler-1.2.0] Support for using Docker unix socket instead of the tcp port

	[core-2.3.1] Fixed DEFAULT section not read in the Json configuration files

	[stdlib-2.4.1] Fixed serialization issue of the LibcloudComputeProvider objects

	[cli-2.1.2] Improvements and fixes to the “shell” command

Benchmarking Suite v. 2.4.0

Release date: 2017-12-04

	[stdlib-2.4.0] randomize names of VMs created by the Benchmarking Suite

	[stdlib-2.4.0] set security groups in openstack

	[scheduler-1.1.0] add config parameter to add global env, tags and additional params

	[scheduler-1.1.0] added the “active” parameter in the schedules

	[core-2.3.0, backends-2.2.0] added storage of execution errors in the database

Benchmarking Suite v. 2.3.1

Release date: 2017-11-21

	[core-2.2.4] fixed support for the –failonerror parameter from the command line

Benchmarking Suite v. 2.3.0

Release date: 2017-11-20

	[core-2.2.2] considering only providers configuration files with extension .json and .conf

	[core-2.2.3] duration is now considered as a metric

	[stdlib-2.3.0] metrics renamed to make them coherent in different tests

	[stdlib-2.3.0] added multiple workloads in the CFD benchmark

	[cli-2.1.1] added –failonerror for the multiexec command. The option allows to not continue with next test if the current one fails

	[scheduler-1.0.0] first release of the Benchsuite Scheduler

Benchmarking Suite v. 2.2.2

Release date: 2017-10-20

This patch release fixes some minor bugs found in the code:

	fixed creation of new sessions if the provider configuration is in json format

	fixed default error handling in the REST server (now the full exception message - and not only “Internal Server Error” is sent back to the caller)

	fixed parsing of “network” and “security_group” parameters: now they can be either the id or the name of the object

	fixed crash of some Filebench workloads on Amazon EC2 using the micro instances

Benchmarking Suite v. 2.2.1

Release date: 2017-10-18

This patch release fixes an outdated information in the REST server documentation page

Benchmarking Suite v. 2.2.0

Release date: 2017-10-18

This minor release introduces following improvements:

	support for json configuration files (only for providers and storage at the moment)

	better handling of network configuration parameters in the provider configuration

Benchmarking Suite v. 2.1.0

Release date: 2017-10-13

This minor release introduces some new functionalities and improvement to the tool:

	support for MongoDB backend

	list of available benchmarks and cloud providers (in Cli and REST)

	field “name” in workload sections in configuration files

	return node_id (in case of OpenStack) in the REST calls

	accept provider configuration as string parameter

	add tags to sessions/executions (e.g. for the user-id in the QET)

	provider and storage configurations can be also specified via command line or environment variable

	improvement and tuning of YCSB, Filebench and DaCapo benchmarks

Benchmarking Suite v. 2.0.0

Release date: 2017-08-01

This is a major release version of the Benchmarking Suite that introduces several changes and improvements with respect to the Benchmarking Suite 1.x versions.

In the Core library:

	a complete refactoring of the code to improve the parameterization and modularization

	introduction of benchmarking sessions

In the StdLib library:

	
	for Benchmarks:

	
	NEW CFD Benchmark

	Updated Filebench and YCSB tools versions

	
	for Cloud Providers:

	
	NEW FIWARE FILAB connector

	Updated Amazon EC2 to work with VPCs

The Cli and REST modules are completely new and the previous implmentation have been abandoned.

Development

This section explains the development, integration and distritbuion process of the Benchmarking Suite. Intended readers are developers.

Continuous Integration

TBD

Release Steps

Checklist to release the Benchmarking Suite

	Commit any not-committed file on the workspace

	Identify whcih modules needs to be released (see commits since the latest release, see the changelog)

	Update the changelog file if not done (use messages in the commits as reference)

Modules Release

For each module to release:

	increase the version number in the __init__py file

	create the source distribution package and upload on PYPI Testing (remove the -r pypitest to upload on the official PYPI)

python setup.py sdist upload -r pypitest

	to test the release from PYPI test:

create a new virtual env
virtualenv -p /usr/bin/python3.5 venvXX

activate the virtualenv
source venvXX/bin/activate

install the modules to test
pip install -v -i https://testpypi.python.org/pypi --extra-index-url https://pypi.python.org/simple/ -U benchsuite.core

	upload the distribution packages on PYPI

python setup.py sdist upload

	commit and push everything on GitHub

	create a release on GitHub (this will also create a tag)

Milestone Release

	Check all the modules and the versions that will be included. Release modules if necessary

	In benchsuite-docs, update the version in conf.py

	Update the changelog.rst with the changelog for this milestone

	Commit the documentation on GitHub and create a tag. This will also create a new tag in readthedocs

	Update the “.release” Dockerfiles in benchsuite-docker project

	Commit benchsuite-docker and create a new tag. This will trigger the creation of a new tag for docker images

Documentation

Documentation is automatically built on ReadTheDocs at every commit

Docker

Docker containers are built automatically from Dockerfiles located in the benchsuite-docker repository.

To create a new tag of Docker images, create a tag in the Git repository that starts with “v” (e.g. “v2.0”, “v1.2.3”, “v1.2.3-beta1”, …)

FAQs

How to clear all stored benchmarking sessions?

Sessions are stored in a file in ~/.local/share/benchmarking-suite/sessions.dat. Deleting that file, all sessions will be removed. This should be an extreme solution, the more correct way to delete a session is to use the destroy-session command.

How to clear all stored executions?

Executions are stored along with the sessions. See previous question: How to clear all stored benchmarking sessions?.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 benchsuite	

 	
 	
 benchsuite.core.model.benchmark	

Index

 B

B

 	
 	Benchmark (class in benchsuite.core.model.benchmark)

 	
 	BenchmarkingController (class in benchsuite.core.controller)

 	benchsuite.core.model.benchmark (module)

Service Providers

TBD

REST Server

Quick Start

This short tutorial shows how to use the API to perform a step-by-step benchmarking test.

First, we need to create a new session. This can be done making a POST request to /api/v1/sessions providing the provider name and service type.

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{\
 "provider": "my-provider",\
 "service": "my-service-type"\
}' http://localhost:5000/api/v1/sessions

Alternatively, the provider configuration can be provided directly in the request payload. For instance, a typical request to create a benchmarking session for Amazon EC2 would be:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{\
 "config": {\
 "provider": {\
 "class": "benchsuite.stdlib.provider.libcloud.LibcloudComputeProvider",\
 "name": "ec2-ggiammat",\
 "driver": "ec2",\
 "access_id": "<your_access_id>",\
 "secret_key": "<your_key>",\
 "region": "us-west-1"\
 },\
 "centos_micro": {\
 "image": "ami-327f5352",\
 "size": "t2.micro",\
 "vm_user": "ec2-user",\
 "platform": "centos_6",\
 "key_name": "<keypair_name>",\
 "ssh_private_key": "----BEGIN RSA PRIVATE KEY-----\nIIE... [...] ...6alL\n-----END RSA PRIVATE KEY-----"\
 }\
 }\
}' http://localhost:5000/api/v1/sessions/

Important

Providing the configuration directly in the request payload, your credentials will be sent over the network unencrypted. Do it only when the server is running in a trusted environment!

Note

The ssh private key msut be provided on a sinlge line (json does not support multiline values), but the line ends must be preserved. A convenient method to generate this string in bash is:

sed -E ':a;N;$!ba;s/\r{0,1}\n/\\n/g' my-key.pem

The response will contain the id of the session created:

{
 "id": "58920c6c-c57c-4c55-a227-0ab1919e83be",
 [...]
}

Now we can create a new benchmarking test execution in the session (note that the id of the session is used in the request URL:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{ \
 "tool": "idle", \
 "workload": "idle30" \
}' http://localhost:5000/api/v1/sessions/58920c6c-c57c-4c55-a227-0ab1919e83be/executions/

The response will contain (along with other execution details) the id of the execution:

{
 "id": "253d9544-b3db-11e7-8bc2-742b62857160",
 [...]
}

With this execution id we can now invoke the prepare step that will create the resources on the provider, install the necessary tools and load the workloads:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' http://localhost:5000/api/v1/executions/253d9544-b3db-11e7-8bc2-742b62857160/prepare

Finally, we can invoke the run step:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' http://localhost:5000/api/v1/executions/253d9544-b3db-11e7-8bc2-742b62857160/run

The response of the prepare and run steps contain the start time and the duration of the operation:

{
 "started": "2017-10-18 08:18:33",
 "duration": "32.28253793716431"
}

The same session can be used to run multiple executions. At the end, the session and the resources created (e.g. VM) can be destroyed using the DELETE operation:

curl -X DELETE --header 'Accept: application/json' http://localhost:5000/api/v1/sessions/58920c6c-c57c-4c55-a227-0ab1919e83be

Swagger Doc

This documentation is autogenerated from the Swagger API Specification using sphinx-swaggerdoc [https://github.com/unaguil/sphinx-swaggerdoc].

A better documentation for the REST API can be found directly in the REST Server:

	Launch the server

	Open http://localhost:5000/api/v1/

Error

Unable to process URL: file://{{currentDir}}/swagger-apiv1.json. Please check that the URL is a valid Swagger api-docs URL and it is accesible

 _static/file.png

_static/minus.png

_static/plus.png

_images/[BenchmarkSession]-*[BenchmarkExecution],[BenchmarkSession]-1[ExecutionEnvironment],[BenchmarkExecution]*-1[ExecutionEnvironment],[ExecutionEnvironment]-1[ServiceProvider].png
eenchmarkExecation

ExecatovEnvironment

ServiceProvider

_static/up-pressed.png

_static/up.png

_images/[ExecutionEnvironment]*-1[ServiceProvider],[BenchmarkExecution]*-1[Benchmark],[BenchmarkExecution]*-1[ExecutionEnvironment],[BenchmarkExecution]1-1[ExecutionResult].png
d

' ExecatiomResult

ExecatiovEnviroment

‘ Corchmar J

nav.xhtml

 Table of Contents

 		
 Welcome to Benchmarking Suite’s documentation!

 		
 Quick Start

 		
 Install

 		
 Configure

 		
 Run!

 		
 Go REST

 		
 References

 		
 Architecture

 		
 Domain Model

 		
 Software Modules

 		
 Benchmarks

 		
 Benchsuite StdLib

 		
 Metrics

 		
 Executions

 		
 Single Step Execution

 		
 Step-by-Step Execution

 		
 Command line tool

 		
 Install

 		
 Usage and Examples

 		
 Create a new session

 		
 Command Line Tool Documentation

 		
 Named Arguments

 		
 Sub-commands:

 		
 REST Server

 		
 Quick Start

 		
 Swagger Doc

 		
 sessions

 		
 executions

 		
 providers

 		
 default

 		
 benchmarks

 		
 Docker

 		
 benchsuite-multiexec

 		
 benchsuite-rest-service

 		
 Scheduler

 		
 Schedules

 		
 Configuration

 		
 Benchsuite Scheduler Docker image

 		
 API Reference

 		
 Changelog

 		
 Unreleased

 		
 Benchmarking Suite v. 2.5.0

 		
 Benchmarking Suite v. 2.4.0

 		
 Benchmarking Suite v. 2.3.1

 		
 Benchmarking Suite v. 2.3.0

 		
 Benchmarking Suite v. 2.2.2

 		
 Benchmarking Suite v. 2.2.1

 		
 Benchmarking Suite v. 2.2.0

 		
 Benchmarking Suite v. 2.1.0

 		
 Benchmarking Suite v. 2.0.0

 		
 Development

 		
 Continuous Integration

 		
 Release Steps

 		
 Modules Release

 		
 Milestone Release

 		
 Documentation

 		
 Docker

 		
 FAQs

 		
 How to clear all stored benchmarking sessions?

 		
 How to clear all stored executions?

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

